2026年学易优同步学案导学高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年学易优同步学案导学高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年学易优同步学案导学高中数学必修第一册人教版》

【例2】已知$\cos(\frac{\pi}{6}-\alpha)=\frac{\sqrt{3}}{3}$,则$\cos(\alpha+\frac{5\pi}{6})=$
$-\frac{\sqrt{3}}{3}$
答案: $-\frac{\sqrt{3}}{3} \cos(\alpha + \frac{5\pi}{6}) = \cos[\pi - (\frac{\pi}{6} - \alpha)]$
$= -\cos(\frac{\pi}{6} - \alpha) = -\frac{\sqrt{3}}{3}$.
(1) 已知$\sin(\pi+\alpha)=\frac{4}{5}$,且$\alpha$是第四象限角,则$\cos(\alpha - 2\pi)$的值是(
B
)

A.$-\frac{3}{5}$
B.$\frac{3}{5}$
C.$\pm\frac{3}{5}$

D.$\frac{4}{5}$
答案:
(1)B 由 $\sin(\pi + \alpha) = \frac{4}{5}$,得 $\sin\alpha = -\frac{4}{5}$,
因为 $\cos(\alpha - 2\pi) = \cos\alpha$,且 $\alpha$ 是第四象限角,
所以 $\cos\alpha = \sqrt{1 - \sin^2\alpha} = \frac{3}{5}$.
(2) 已知$\sin(\theta-\frac{\pi}{3})=-\frac{1}{3}$,且$\theta\in(0,\frac{\pi}{2})$,则$\cos(\frac{2\pi}{3}+\theta)=$
$-\frac{2\sqrt{2}}{3}$
答案:
(2) $-\frac{2\sqrt{2}}{3} \cos(\frac{2\pi}{3} + \theta) = \cos[(\theta - \frac{\pi}{3}) + \pi]$
$= -\cos(\theta - \frac{\pi}{3})$,
$\because \theta \in (0, \frac{\pi}{2}), \therefore \theta - \frac{\pi}{3} \in (-\frac{\pi}{3}, \frac{\pi}{6})$,
$\therefore \cos(\theta - \frac{\pi}{3}) > 0$,
即 $\cos(\theta - \frac{\pi}{3}) = \sqrt{1 - \sin^2(\theta - \frac{\pi}{3})} = \frac{2\sqrt{2}}{3}$,
$\therefore \cos(\frac{2\pi}{3} + \theta) = -\frac{2\sqrt{2}}{3}$.
【例3】化简:(1) $\frac{\cos(-\alpha)\tan(7\pi+\alpha)}{\sin(\pi-\alpha)}$;
(2) $\frac{\sin(1440^{\circ}+\alpha)·\cos(\alpha - 1080^{\circ})}{\cos(-180^{\circ}-\alpha)·\sin(-\alpha - 180^{\circ})}$。
答案:
(1)原式 $= \frac{\cos\alpha\tan(\pi + \alpha)}{\sin\alpha}$
$= \frac{\cos\alpha · \tan\alpha}{\sin\alpha} = \frac{\sin\alpha}{\sin\alpha} = 1$.
(2)原式 $= \frac{\sin(4 × 360° + \alpha) · \cos(\alpha - 3 × 360°)}{\cos(180° + \alpha) · [-\sin(180° + \alpha)]}$
$= \frac{\sin\alpha · \cos\alpha}{(-\cos\alpha) · \sin\alpha} = \frac{\cos\alpha}{-\cos\alpha} = -1$.
$\tan(5\pi+\alpha)=m$,则$\frac{\sin(\alpha - 3\pi)+\cos(\pi-\alpha)}{\sin(-\alpha)-\cos(\pi+\alpha)}$的值为(
A
)

A.$\frac{m + 1}{m - 1}$
B.$\frac{m - 1}{m + 1}$
C.$-1$
D.$1$
答案: A 因为 $\tan(5\pi + \alpha) = \tan\alpha = m$,
所以原式 $= \frac{\sin(\pi + \alpha) - \cos\alpha}{-\sin\alpha + \cos\alpha} = \frac{-\sin\alpha - \cos\alpha}{-\sin\alpha + \cos\alpha}$
$= \frac{\sin\alpha + \cos\alpha}{\sin\alpha - \cos\alpha} = \frac{\tan\alpha + 1}{\tan\alpha - 1} = \frac{m + 1}{m - 1}$.
1. 化简$\sin^{2}(\pi+\alpha)-\cos(\pi+\alpha)·\cos(-\alpha)+1$的结果为(
D
)

A.$1$
B.$2\sin^{2}\alpha$
C.$0$
D.$2$
答案: 1.D 原式 $= \sin^2\alpha + \cos^2\alpha + 1 = 2$.
2. $\log_{2}(\cos\frac{7\pi}{4})$的值为(
B
)

A.$-1$
B.$-\frac{1}{2}$
C.$\frac{1}{2}$
D.$\frac{\sqrt{2}}{2}$
答案: 2.B
3. 已知$\sin(\pi+\alpha)=\frac{3}{5}$,且$\alpha$是第四象限角,那么$\cos(\alpha-\pi)$的值是(
B
)

A.$\frac{4}{5}$
B.$-\frac{4}{5}$
C.$\pm\frac{4}{5}$
D.$\frac{3}{5}$
答案: 3.B 因为 $\sin(\pi + \alpha) = -\sin\alpha = -\frac{3}{5}$,
所以 $\sin\alpha = -\frac{3}{5}$.
又 $\alpha$ 是第四象限角,
所以 $\cos\alpha = \sqrt{1 - \sin^2\alpha} = \frac{4}{5}$,
所以 $\cos(\alpha - \pi) = \cos(\pi - \alpha) = -\cos\alpha = -\frac{4}{5}$.
4. 化简:$\frac{\cos(5\pi+\alpha)}{\sin(-3\pi-\alpha)}·\tan(\pi+\alpha)=$
$-1$
答案: 4. $-1$ 原式 $= \frac{\cos(\pi + \alpha)}{-\sin(\pi + \alpha)} · \tan\alpha = \frac{-\cos\alpha}{\sin\alpha} · \frac{\sin\alpha}{\cos\alpha} = -1$.

查看更多完整答案,请扫码查看

关闭