2025年通城学典非常课课通九年级数学上册人教版江苏专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学上册人教版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典非常课课通九年级数学上册人教版江苏专版》

第106页
3. 旋转类图形变化迁移
典例 12 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的. 下面是一个案例,请补充完整.
(1)原题:如图①,点$E$,$F$分别在正方形$ABCD$的边$BC$,$CD$上,$\angle EAF = 45^{\circ}$,连接$EF$,则$EF = BE + DF$,请给出证明过程.
(2)类比联想:如图②,在四边形$ABCD$中,$AB = AD$,$\angle BAD = 90^{\circ}$,点$E$,$F$分别在边$BC$,$CD$上,$\angle EAF = 45^{\circ}$. 如果$\angle B$,$\angle D$都不是直角,那么当$\angle B$与$\angle D$满足等量关系
时,仍有$EF = BE + DF$,并给出证明过程.
(3)引申拓展:如图③,在$\triangle ABC$中,$\angle BAC = 90^{\circ}$,$AB = AC$,点$D$,$E$均在边$BC$上,且$\angle DAE = 45^{\circ}$. 猜想$BD$,$DE$,$EC$满足的等量关系,并写出推理过程.
答案:
解析:
(1)将$\triangle ABE$绕点$A$按逆时针方向旋转$90^{\circ}$,得到$\triangle ADG$,先证点$F$,$D$,$G$共线,再证$\triangle AEF\cong\triangle AGF$,得$EF = GF$,即可证得结论正确.
(2)将$\triangle ABE$绕点$A$按逆时针方向旋转$90^{\circ}$,得到$\triangle ADG$,先证点$F$,$D$,$G$共线,再证$\triangle AFE\cong\triangle AFG$,得$EF = GF$,即可证得结论正确.
(3)将$\triangle AEC$绕点$A$按顺时针方向旋转$90^{\circ}$,得到$\triangle AE'B$,连接$DE'$,证$\angle E'BD = 90^{\circ}$,由勾股定理得到$DE'^{2} = BD^{2}+BE'^{2}$,再证$\triangle AE'D\cong\triangle AED$,从而转化线段,得到$BD$,$DE$,$EC$的关系.
解:
(1)$\because AB = AD$,$\therefore AB$与$AD$能重合. 如图④,将$\triangle ABE$绕点$A$按逆时针方向旋转$90^{\circ}$,得到$\triangle ADG$. $\therefore\triangle ABE\cong\triangle ADG$. $\therefore AE = AG$,$BE = DG$,$\angle1 = \angle2$,$\angle B = \angle ADG = 90^{\circ}$. $\because\angle ADC+\angle ADG = 180^{\circ}$,$\therefore$点$F$,$D$,$G$共线. $\because\angle EAF = 45^{\circ}$,$\therefore\angle1+\angle3 = 45^{\circ}$. $\therefore\angle2+\angle3 = 45^{\circ}$. $\therefore\angle EAF = \angle GAF$. 在$\triangle AEF$和$\triangle AGF$中,$\begin{cases}AE = AG\\\angle EAF = \angle GAF\\AF = AF\end{cases}$,$\therefore\triangle AEF\cong\triangle AGF$. $\therefore EF = GF$. $\therefore EF = DG + DF = BE + DF$.
(2)$\angle B+\angle D = 180^{\circ}$. $\because AB = AD$,$\therefore AB$与$AD$能重合. 如图⑤,将$\triangle ABE$绕点$A$按逆时针方向旋转$90^{\circ}$,得到$\triangle ADG$. $\therefore\triangle ABE\cong\triangle ADG$. $\therefore AE = AG$,$BE = DG$,$\angle B = \angle5$,$\angle1 = \angle3$. $\because\angle B+\angle4 = 180^{\circ}$,$\therefore\angle5+\angle4 = 180^{\circ}$. $\therefore$点$F$,$D$,$G$共线. $\because\angle EAF = 45^{\circ}$,$\therefore\angle1+\angle2 = 45^{\circ}$. $\therefore\angle2+\angle3 = 45^{\circ}$. $\therefore\angle EAF = \angle GAF$. $\because AE = AG$,$AF = AF$,$\therefore\triangle AFE\cong\triangle AFG$. $\therefore EF = GF$. $\therefore EF = DG + DF = BE + DF$.
(3)$DE^{2} = BD^{2}+EC^{2}$. 如图⑥,将$\triangle AEC$绕点$A$按顺时针方向旋转$90^{\circ}$,得到$\triangle AE'B$,连接$DE'$. $\therefore\triangle AE'B\cong\triangle AEC$. $\therefore BE' = CE$,$AE' = AE$,$\angle1 = \angle C$,$\angle3 = \angle4$. $\because\angle BAC = 90^{\circ}$,$AB = AC$,$\therefore\angle2 = \angle C = 45^{\circ}$. $\therefore\angle2+\angle1 = 90^{\circ}$,即$\angle E'BD = 90^{\circ}$. $\therefore DE'^{2} = BD^{2}+BE'^{2}$. 又$\because\angle7 = 45^{\circ}$,$\therefore\angle8+\angle4 = 45^{\circ}$. $\therefore\angle3+\angle8 = 45^{\circ}$,即$\angle E'AD = 45^{\circ}$. 在$\triangle AE'D$和$\triangle AED$中,$\because AE' = AE$,$\angle E'AD = \angle EAD$,$AD = AD$,$\therefore\triangle AE'D\cong\triangle AED$. $\therefore DE' = DE$. $\therefore DE^{2} = BD^{2}+EC^{2}$.


查看更多完整答案,请扫码查看

关闭