第38页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
(1) 模型意识·有一个圆环,外圆半径是 20 厘米,内圆半径是 16 厘米,这个圆环的面积是(
452.16
)平方厘米。
答案:
1.
(1)452.16
(1)452.16
(2) 生活情境·中心小学修建了一个周长是 31.4 米的圆形花坛,花坛的周围修建了一条宽为 1 米的小路,这条小路的面积是(
34.54
)平方米。
答案:
1.
(2)34.54
(2)34.54
(3) 如果圆环内圆的直径等于外圆的半径,圆环的面积是内圆面积的(
3
)倍。
答案:
1.
(3)3
(3)3
2. 几何直观·求图中涂色部分的面积。
(1)

(2)
]
(1)
(2)
答案:
$2.(1)3.14×6^{2}-3.14×4^{2}=62.8(dm^{2}) $
$(2)3.14×(\frac{8}{2})^{2}=50.24(cm^{2}) $
$3.14×(\frac{4}{2})^{2}=12.56(cm^{2}) $
$(50.24-12.56)÷2=18.84(cm^{2})$
$(2)3.14×(\frac{8}{2})^{2}=50.24(cm^{2}) $
$3.14×(\frac{4}{2})^{2}=12.56(cm^{2}) $
$(50.24-12.56)÷2=18.84(cm^{2})$
3. 生活情境·奇奇一家去饭店吃饭,餐桌是双层旋转圆形大餐桌,上层圆形圆桌的直径是 1.6 米,下层圆形桌面的直径是 2 米,下层桌面上可以使用的面积是多少平方米?
答案:
3.1.6÷2=0.8(米) 2÷2=1(米)
$3.14×(1^{2}-0.8^{2})=1.1304($平方米)
答:下层桌面上可以使用的面积是1.1304平方米。
$3.14×(1^{2}-0.8^{2})=1.1304($平方米)
答:下层桌面上可以使用的面积是1.1304平方米。
4. (教材 P55T2 变式)折扇又名“撒扇”“纸扇”等,是一种用竹木或象牙做扇骨,韧纸或绫绢做扇面的能折叠的扇子。如图是一把绫绢折扇,做这样一把折扇扇面至少需要绫绢面料多少平方分米?
]
答案:
4.3-2=1(dm)
$3.14×(3^{2}-1^{2})×\frac{1}{2}=12.56(dm^{2}) $
答:至少需要绫绢面料$12.56dm^{2}。$
$3.14×(3^{2}-1^{2})×\frac{1}{2}=12.56(dm^{2}) $
答:至少需要绫绢面料$12.56dm^{2}。$
5. 传统文化·我国古代数学名著《九章算术》的“方田章”记载了这样一种求圆环面积的公式:“并中外周而半之,以径乘之为积步”,意思是将外圆和内圆的周长的平均数乘环的宽度可以得到环形的面积。利用这个公式求如图所示环形的面积,并利用我们教材上计算环形面积的方法验证结果是否正确。

答案:
$5.(31.4+25.12)÷2×1=28.26(cm^{2}) $
31.4÷3.14÷2=5(cm) 25.12÷3.14÷2=4(cm)
$3.14×(5^{2}-4^{2})=28.26(cm^{2}) $
答:结果正确。
31.4÷3.14÷2=5(cm) 25.12÷3.14÷2=4(cm)
$3.14×(5^{2}-4^{2})=28.26(cm^{2}) $
答:结果正确。
6. 创新意识·如图,涂色部分的面积是 50 平方厘米,求圆环的面积。

答案:
6.3.14×(50×2)=314(平方厘米)
答:圆环的面积是314平方厘米。
解析:阴影部分的面积等于大直角三角形ABO的面积减去小直角三角形CDO的面积,大直角三角形的底和高即为大圆的半径,小直角三角形的底和高即为小圆的半径,所以阴影部分的面积即为$(R^{2}-r^{2})÷2,$据此用3.14乘$(R^{2}-r^{2})$即可得出圆环的面积。
答:圆环的面积是314平方厘米。
解析:阴影部分的面积等于大直角三角形ABO的面积减去小直角三角形CDO的面积,大直角三角形的底和高即为大圆的半径,小直角三角形的底和高即为小圆的半径,所以阴影部分的面积即为$(R^{2}-r^{2})÷2,$据此用3.14乘$(R^{2}-r^{2})$即可得出圆环的面积。
查看更多完整答案,请扫码查看