2025年新课程学习与检测九年级数学上册
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程学习与检测九年级数学上册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第58页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
10. 函数$y = k(1 - x)$和$y=\frac{k}{x}(k\neq0)$在同一平面直角坐标系中的图象可能是(

D
)
答案:
10.D
11. 如果函数$y = x^{2m - 1}$为反比例函数,那么$m$的值是
0
.
答案:
11.0
12. 若一条双曲线过点$(1,-\sqrt{3})$,则它的函数表达式为
$y=-\frac{\sqrt{3}}{x}$
,它的图象在第二、四
象限,且在每一个象限内,$y$随$x$的增大而增大
.
答案:
12.$y=-\frac{\sqrt{3}}{x}$ 二、四 增大
13. 已知反比例函数$y=\frac{3m - 2}{x}$,当$m$
$>\frac{2}{3}$
时,其图象的两个分支在第一、三象限内;当$m$$<\frac{2}{3}$
时,其图象在每个象限内$y$随$x$的增大而增大.
答案:
13.$>\frac{2}{3}$ $<\frac{2}{3}$
14. 若点$A(-3,y_{1}),B(-1,y_{2})$都在反比例函数$y=\frac{k}{x}$的图象上,且$y_{1}>y_{2}$,则实数$k$的取值范围是
$k>0$
.
答案:
14.$k>0$
15. 如图所示,在平面直角坐标系中,$Rt\triangle ABC$的边$BA\perp y$轴于点$A$,$\angle B = 90^{\circ}$,反比例函数$y=\frac{k}{x}(k>0)$的图象分别过边$AB$的中点$D$、顶点$C$.若$OA = 2BC,S_{\triangle ABC}=5$,则$k$的值为

10
.
答案:
15.10
16. (6分)已知$y - 2$与$x$成正比例,当$x = 3$时,$y = 1$.
(1)求$y$与$x$的函数表达式.
(2)当$y = - 3$时,求自变量$x$的值.
(1)求$y$与$x$的函数表达式.
(2)当$y = - 3$时,求自变量$x$的值.
答案:
16.解:
(1)根据题意,设$y-2=kx$,
把$x=3,y=1$代入,得$-1=3k$,
解得$k=-\frac{1}{3}$,
故$y-2=-\frac{1}{3}x$,
即$y$与$x$的函数关系式为$y=-\frac{1}{3}x+2$.
(2)把$y=-3$代入$y=-\frac{1}{3}x+2$,得$-3=-\frac{1}{3}x+2$,
解得$x=15$.
(1)根据题意,设$y-2=kx$,
把$x=3,y=1$代入,得$-1=3k$,
解得$k=-\frac{1}{3}$,
故$y-2=-\frac{1}{3}x$,
即$y$与$x$的函数关系式为$y=-\frac{1}{3}x+2$.
(2)把$y=-3$代入$y=-\frac{1}{3}x+2$,得$-3=-\frac{1}{3}x+2$,
解得$x=15$.
查看更多完整答案,请扫码查看