2026年高中必刷题高中物理必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年高中必刷题高中物理必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第41页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
1. [江西南昌一中2024高一下期中](多选)如图所示,粗糙水平圆盘上,质量相等的$A$、$B$两物块叠放在一起,随圆盘一起做匀速圆周运动,最大静摩擦力等于滑动摩擦力,则下列说法正确的是(

A.物块$A$、$B$的运动属于匀变速曲线运动
B.$B$所需的向心力是$A$所需的向心力的$2$倍
C.盘对$B$的摩擦力是$B$对$A$的摩擦力的$2$倍
D.若$B$先滑动,则$B$与$A$之间的动摩擦因数$\mu_A$大于盘与$B$之间的动摩擦因数$\mu_B$
CD
)A.物块$A$、$B$的运动属于匀变速曲线运动
B.$B$所需的向心力是$A$所需的向心力的$2$倍
C.盘对$B$的摩擦力是$B$对$A$的摩擦力的$2$倍
D.若$B$先滑动,则$B$与$A$之间的动摩擦因数$\mu_A$大于盘与$B$之间的动摩擦因数$\mu_B$
答案:
1.CD [解析]两物块随圆盘一起做匀速圆周运动,加速度方向不断变化,均做非匀变速曲线运动,A错误;根据$F_{n}=m\omega^{2}r$,因为两物块的角速度大小相等,转动半径相等,质量相等,则两物块所需向心力相等,B错误;对$A、B$整体分析,有$f_{B}=2mr\omega^{2}$,对$A$分析,有$f_{A}=mr\omega^{2}$,可知圆盘对$B$的摩擦力是$B$对$A$的摩擦力的$2$倍,C正确;对$A、B$整体分析,有$\mu_{B}·2mg = 2mr\omega_{B}^{2}$,解得$\omega_{B}=\sqrt{\frac{\mu_{B}g}{r}}$,对$A$分析,有$\mu_{A}mg = mr\omega_{A}^{2}$,解得$\omega_{A}=\sqrt{\frac{\mu_{A}g}{r}}$,若$B$先滑动,可知$B$先达到临界角速度,即$B$的临界角速度较小,可知$\mu_{B}<\mu_{A}$,D正确.
2. [北京师范大学附属实验中学2025高一下期中](多选)如图所示,地面上固定一个内壁光滑的圆锥筒,其轴线竖直且轴截面为等边三角形。现有三个质量均为$m$的小球(两两间连接完全相同的轻质弹簧)在筒内壁的某个水平面内以角速度$\omega$匀速旋转,此时弹簧均处于原长状态。已知这三个小球在弹簧均处于$2$倍原长时的水平面内仍能以角速度$\omega$匀速旋转,重力加速度为$g$。下列说法正确的有(

A.弹簧的原长$L = \dfrac{\sqrt{3}g}{\omega^2}$
B.弹簧的劲度系数$k = \dfrac{m\omega^2}{3}$
C.弹簧处于$2$倍原长时,小球的向心加速度大小为$2\sqrt{3}g$
D.这三个小球在筒内任意的水平面(在弹簧的弹性限度内)内均可以角速度$\omega$匀速旋转
BCD
)A.弹簧的原长$L = \dfrac{\sqrt{3}g}{\omega^2}$
B.弹簧的劲度系数$k = \dfrac{m\omega^2}{3}$
C.弹簧处于$2$倍原长时,小球的向心加速度大小为$2\sqrt{3}g$
D.这三个小球在筒内任意的水平面(在弹簧的弹性限度内)内均可以角速度$\omega$匀速旋转
答案:
2.BCD [解析]由题意可知,弹簧均处于原长状态时,小球做圆周运动的半径为$r_{1}=\frac{\sqrt{3}}{3}L$,当小球在弹簧均处于$2$倍原长时,小球做圆周运动的半径为$r_{2}=\frac{2\sqrt{3}}{3}L$,设轴线与圆锥筒侧边的夹角为$\theta$,根据牛顿第二定律有$\frac{mg}{\tan\theta}=m\omega^{2}r_{1}$,$\frac{mg}{\tan\theta}+2kL\cos30^{\circ}=m\omega^{2}r_{2}$,由题意可知$\theta = 30^{\circ}$,联立解得$L=\frac{3g}{\omega^{2}}$,$k=\frac{m\omega^{2}}{3}$,故A错误,B正确;弹簧处于$2$倍原长时,根据牛顿第二定律可知,小球的向心加速度大小为$a=\omega^{2}r_{2}=2\sqrt{3}g$,故C正确;当小球在弹簧均处于$n$倍原长时,小球做圆周运动的半径为$r_{n}=\frac{\sqrt{3}}{3}nL$,根据牛顿第二定律有$\frac{mg}{\tan\theta}+2k(n - 1)L\cos30^{\circ}=m\omega^{2}r_{n}$,解得$\omega_{n}=\omega$,即这三个小球在筒内任意的水平面(在弹簧的弹性限度内)内均可以角速度$\omega$匀速旋转,故D正确.
3. [重庆育才中学2025高一下月考](多选)如图所示(俯视图),用一根原长为$L_0$、劲度系数为$k$的轻弹簧将质量均为$m$的两个可视为质点的小物块$P$、$Q$连接在一起,放置在能绕$O$点在水平面内转动的圆盘上。物块$P$、$Q$和$O$点构成直角三角形,已知$QO$的距离为$L_0$、弹簧长度为$2L_0$,$\angle POQ = 90°$。现使圆盘以不同的角速度$\omega$做匀速圆周运动,小物块$P$、$Q$与圆盘始终相对静止,弹簧长度始终不变。下列说法正确的是(

A.物块$P$所受合力始终指向圆心
B.圆盘对$Q$的静摩擦力方向不随$\omega$的变化而变化
C.当$\omega = \sqrt{\dfrac{k}{m}}$时,弹簧弹力与圆盘对$P$的摩擦力大小相等
D.当圆盘对物块$P$的静摩擦力大小为$\dfrac{1}{2}kL_0$时,$\omega = \sqrt{\dfrac{k}{2m}}$
ACD
)A.物块$P$所受合力始终指向圆心
B.圆盘对$Q$的静摩擦力方向不随$\omega$的变化而变化
C.当$\omega = \sqrt{\dfrac{k}{m}}$时,弹簧弹力与圆盘对$P$的摩擦力大小相等
D.当圆盘对物块$P$的静摩擦力大小为$\dfrac{1}{2}kL_0$时,$\omega = \sqrt{\dfrac{k}{2m}}$
答案:
3.ACD
题图剖析
[解析]由于物块$P$随圆盘一起做匀速圆周运动,则其所受合力提供向心力,即合力始终指向圆心,故A正确;$Q$随圆盘一起做匀速圆周运动,弹簧弹力与静摩擦力的合力提供向心力,由于圆盘转动的角速度不同,则$Q$做圆周运动所需的向心力大小不同,由于弹簧长度不变,弹簧的弹力不变,所以圆盘对$Q$的静摩擦力方向随$\omega$的变化而变化,故B错误;当$\omega = \sqrt{\frac{k}{m}}$时,向心力大小为$F_{n}=m\omega^{2}· OP$,由几何知识可知$OP=\sqrt{3}L_{0}$,$\angle OPQ = 30^{\circ}$,弹簧弹力大小为$kx = kL_{0}$,由力的关系结合数学知识可知$f^{2}=(kx)^{2}+F_{n}^{2}-2kx· F_{n}\cos\angle OPQ$,解得$f = kx = kL_{0}$,故C正确;同理,当圆盘对物块$P$的静摩擦力大小为$\frac{1}{2}kL_{0}$时,有$f^{2}=(kx)^{2}+F_{n}'^{2}-2kx· F_{n}'\cos\angle OPQ$,其中$F_{n}'=m\omega^{2}· OP$,联立解得$\omega=\sqrt{\frac{k}{2m}}$,故D正确.
3.ACD
题图剖析
[解析]由于物块$P$随圆盘一起做匀速圆周运动,则其所受合力提供向心力,即合力始终指向圆心,故A正确;$Q$随圆盘一起做匀速圆周运动,弹簧弹力与静摩擦力的合力提供向心力,由于圆盘转动的角速度不同,则$Q$做圆周运动所需的向心力大小不同,由于弹簧长度不变,弹簧的弹力不变,所以圆盘对$Q$的静摩擦力方向随$\omega$的变化而变化,故B错误;当$\omega = \sqrt{\frac{k}{m}}$时,向心力大小为$F_{n}=m\omega^{2}· OP$,由几何知识可知$OP=\sqrt{3}L_{0}$,$\angle OPQ = 30^{\circ}$,弹簧弹力大小为$kx = kL_{0}$,由力的关系结合数学知识可知$f^{2}=(kx)^{2}+F_{n}^{2}-2kx· F_{n}\cos\angle OPQ$,解得$f = kx = kL_{0}$,故C正确;同理,当圆盘对物块$P$的静摩擦力大小为$\frac{1}{2}kL_{0}$时,有$f^{2}=(kx)^{2}+F_{n}'^{2}-2kx· F_{n}'\cos\angle OPQ$,其中$F_{n}'=m\omega^{2}· OP$,联立解得$\omega=\sqrt{\frac{k}{2m}}$,故D正确.
4. (多选)如图,在倾角为$\theta = 37°$的锥体表面上对称地放着可视为质点的$A$、$B$两个物体,用一轻绳跨过固定在顶部的光滑的定滑轮连接在一起,开始时轻绳绷直但无张力。已知$A$、$B$两个物体的质量分别为$m$和$2m$,它们到竖直轴的距离均为$r = 1\ m$,两物体与锥体表面的动摩擦因数均为$\mu = 0.8$,假设最大静摩擦力等于滑动摩擦力,$g = 10\ m/s^2$,$\sin37° = 0.6$,则(

A.轻绳有张力之前,$B$物体受到的静摩擦力一直增大
B.轻绳即将有张力时,转动的角速度$\omega_1 = \dfrac{\sqrt{5}}{4}\ rad/s$
C.在$A$、$B$滑动前$A$所受的静摩擦力一直增大
D.在$A$、$B$即将滑动时,转动的角速度$\omega_2 = \dfrac{\sqrt{5}}{4}\ rad/s$
AB
)A.轻绳有张力之前,$B$物体受到的静摩擦力一直增大
B.轻绳即将有张力时,转动的角速度$\omega_1 = \dfrac{\sqrt{5}}{4}\ rad/s$
C.在$A$、$B$滑动前$A$所受的静摩擦力一直增大
D.在$A$、$B$即将滑动时,转动的角速度$\omega_2 = \dfrac{\sqrt{5}}{4}\ rad/s$
答案:
4.AB
题图剖析
[解析]绳子有张力之前,对$B$物体进行受力分析,水平方向有$f\cos\theta - N\sin\theta = 2m\omega^{2}r$,竖直方向有$f\sin\theta + N\cos\theta = 2mg$,解得$f = 2m\omega^{2}r\cos\theta+2mg\sin\theta$,$N = 2mg\cos\theta - 2m\omega^{2}r\sin\theta$,可知随$\omega$的增大,$f$增大,$N$减小,故A正确;绳上即将有张力时,对$B$物体受力分析,在水平方向有$\mu N\cos\theta - N\sin\theta = 2m\omega_{1}^{2}r$,竖直方向有$\mu N\sin\theta + N\cos\theta = 2mg$,代入数据解得$\omega_{1}=\frac{\sqrt{5}}{4}rad/s$,故B正确;在$\omega$逐渐增大的过程中,$A$物体先有向下滑动的趋势,后有向上滑动的趋势,其所受静摩擦力先沿锥体表面向上增大,后沿锥体表面向上减小,再沿锥体表面向下增大,故C错误;$\omega$增大到$A、B$整体将要滑动时,$B$有向下滑动的趋势,$A$有向上滑动的趋势,对$A$物体,水平方向有$(T - \mu N_{A})\cos\theta - N_{A}\sin\theta = m\omega_{2}^{2}r$,竖直方向有$(T - \mu N_{A})\sin\theta + N_{A}\cos\theta = mg$,对$B$物体,水平方向有$(T + \mu N_{B})·\cos\theta - N_{B}\sin\theta = 2m\omega_{2}^{2}r$,竖直方向有$(T + \mu N_{B})\sin\theta + N_{B}\cos\theta = 2mg$,联立解得$\omega_{2}=\sqrt{\frac{165}{28}}rad/s$,故D错误.
4.AB
题图剖析
[解析]绳子有张力之前,对$B$物体进行受力分析,水平方向有$f\cos\theta - N\sin\theta = 2m\omega^{2}r$,竖直方向有$f\sin\theta + N\cos\theta = 2mg$,解得$f = 2m\omega^{2}r\cos\theta+2mg\sin\theta$,$N = 2mg\cos\theta - 2m\omega^{2}r\sin\theta$,可知随$\omega$的增大,$f$增大,$N$减小,故A正确;绳上即将有张力时,对$B$物体受力分析,在水平方向有$\mu N\cos\theta - N\sin\theta = 2m\omega_{1}^{2}r$,竖直方向有$\mu N\sin\theta + N\cos\theta = 2mg$,代入数据解得$\omega_{1}=\frac{\sqrt{5}}{4}rad/s$,故B正确;在$\omega$逐渐增大的过程中,$A$物体先有向下滑动的趋势,后有向上滑动的趋势,其所受静摩擦力先沿锥体表面向上增大,后沿锥体表面向上减小,再沿锥体表面向下增大,故C错误;$\omega$增大到$A、B$整体将要滑动时,$B$有向下滑动的趋势,$A$有向上滑动的趋势,对$A$物体,水平方向有$(T - \mu N_{A})\cos\theta - N_{A}\sin\theta = m\omega_{2}^{2}r$,竖直方向有$(T - \mu N_{A})\sin\theta + N_{A}\cos\theta = mg$,对$B$物体,水平方向有$(T + \mu N_{B})·\cos\theta - N_{B}\sin\theta = 2m\omega_{2}^{2}r$,竖直方向有$(T + \mu N_{B})\sin\theta + N_{B}\cos\theta = 2mg$,联立解得$\omega_{2}=\sqrt{\frac{165}{28}}rad/s$,故D错误.
查看更多完整答案,请扫码查看