2025年新坐标同步练习高中数学A版选择性必修第一册人教版青海专用


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新坐标同步练习高中数学A版选择性必修第一册人教版青海专用 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



思考2
设平面向量$\boldsymbol{a}= (x_{1},y_{1})$,$\boldsymbol{b}= (x_{2},y_{2})$,则$\boldsymbol{a}+\boldsymbol{b}$, $\boldsymbol{a}-\boldsymbol{b}$,$\lambda\boldsymbol{a}$,$\boldsymbol{a}\cdot\boldsymbol{b}$的运算结果分别是什么?
$\boldsymbol{a}+\boldsymbol{b}=(x_{1}+x_{2},y_{1}+y_{2})$,$\boldsymbol{a}-\boldsymbol{b}=(x_{1}-x_{2},y_{1}-y_{2})$,$\lambda\boldsymbol{a}=(\lambda x_{1},\lambda y_{1})$,$\boldsymbol{a}\cdot\boldsymbol{b}=x_{1}x_{2}+y_{1}y_{2}$
答案: $a+b=(x_{1}+x_{2},y_{1}+y_{2}),a - b=(x_{1}-x_{2},y_{1}-y_{2}),λa=(λx_{1},λy_{1}),a\cdot b=x_{1}x_{2}+y_{1}y_{2}.$
思考3
有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示吗?
设$a=(a_{1},a_{2},a_{3}),b=(b_{1},b_{2},b_{3})$,与平面向量运算的坐标表示一样,有$a + b=(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3}),a - b=(a_{1}-b_{1},a_{2}-b_{2},a_{3}-b_{3}),λa=(λa_{1},λa_{2},λa_{3}),λ∈R,a\cdot b=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}.$
答案: 设$a=(a_{1},a_{2},a_{3}),b=(b_{1},b_{2},b_{3})$,与平面向量运算的坐标表示一样,有$a + b=(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3}),a - b=(a_{1}-b_{1},a_{2}-b_{2},a_{3}-b_{3}),λa=(λa_{1},λa_{2},λa_{3}),λ∈R,a\cdot b=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}.$
1. 若$\boldsymbol{a}= (a_{1},a_{2},a_{3})$,$\boldsymbol{b}= (b_{1},b_{2},b_{3})$,则$\boldsymbol{a}+\boldsymbol{b}=$
$(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3})$
,$\boldsymbol{a}-\boldsymbol{b}=$
$(a_{1}-b_{1},a_{2}-b_{2},a_{3}-b_{3})$
,$\lambda\boldsymbol{a}=$
$(λa_{1},λa_{2},λa_{3})$
,$\boldsymbol{a}\cdot\boldsymbol{b}=$
$a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}$
答案: 1.$(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3})$;2.$(a_{1}-b_{1},a_{2}-b_{2},a_{3}-b_{3})$;3.$(λa_{1},λa_{2},λa_{3})$;4.$a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}$
2. 设$A(x_{1},y_{1},z_{1})$,$B(x_{2},y_{2},z_{2})$,则$\overrightarrow{AB}= ($
$x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1}$
$)$。即一个空间向量的坐标等于表示此向量的有向线段的终点坐标
减去
起点坐标。
答案: 5.$x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1}$;6.减去
1. (2025·福州期中)已知点$A(1,2,0)$,若向量$\overrightarrow{AB}= (2,3,-1)$,则点$B$的坐标是(
D
)
A.$(-1,-1,1)$
B.$(1,1,-1)$
C.$(-3,-5,1)$
D.$(3,5,-1)$
答案: D
2. 已知$\boldsymbol{a}= (-1,2,1)$,$\boldsymbol{b}= (2,0,1)$,则$(2\boldsymbol{a}+3\boldsymbol{b})\cdot(\boldsymbol{a}-\boldsymbol{b})= $
$-4$
答案: $-4$
3. (2025·北京期中)在空间直角坐标系中,已知点$A(1,m,1)$,$B(-1,1,2)$,$C(3,-2,1)$,$D(1,-3,2)$,若$A$,$B$,$C$,$D$四点共面,则$m= $
2
答案: 2
二 空间向量平行、垂直的坐标表示及应用
思考
设平面向量$\boldsymbol{a}= (x_{1},y_{1})$,$\boldsymbol{b}= (x_{2},y_{2})$,则$\boldsymbol{a}//\boldsymbol{b}$与$\boldsymbol{a}\perp\boldsymbol{b}$的充要条件分别是什么?对于空间向量是不是也有类似结论?
$a// b\Leftrightarrow x_{1}y_{2}-x_{2}y_{1}=0;a\perp b\Leftrightarrow x_{1}x_{2}+y_{1}y_{2}=0$.对于空间向量也有类似结论.
答案: $a// b\Leftrightarrow x_{1}y_{2}-x_{2}y_{1}=0;a\perp b\Leftrightarrow x_{1}x_{2}+y_{1}y_{2}=0$.对于空间向量也有类似结论.
若$\boldsymbol{a}= (a_{1},a_{2},a_{3})$,$\boldsymbol{b}= (b_{1},b_{2},b_{3})$,则
1. $\boldsymbol{a}$与$\boldsymbol{b}$共线的充要条件是:存在实数$\lambda$,使得
$a = λb$

2. 用坐标表示为:
$a_{1}=λb_{1},a_{2}=λb_{2},a_{3}=λb_{3}$

3. $\boldsymbol{a}$与$\boldsymbol{b}$垂直的充要条件是:
$a\cdot b = 0$

4. 用坐标表示为:
$a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}=0$
答案: 1.$a = λb$;2.$a_{1}=λb_{1},a_{2}=λb_{2},a_{3}=λb_{3}$;3.$a\cdot b = 0$;4.$a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}=0$
角度1 证平行与垂直
[例1] (对接教材例2)在正方体$ABCD - A_{1}B_{1}C_{1}D_{1}$中,已知$E$,$F$,$G$,$H分别是CC_{1}$,$BC$,$CD$,$A_{1}C_{1}$的中点。求证:
(1)$AB_{1}// GE$,$AB_{1}\perp EH$;
(2)$A_{1}G\perp平面EFD$。
证明:如图,以A为坐标原点,以$\{\overrightarrow {AB},\overrightarrow {AD},\overrightarrow {AA_{1}}\}$为正交基底建立空间直角坐标系.设正方体的棱长为1,则$A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),A_{1}(0,0,1),B_{1}(1,0,1),C_{1}(1,1,1).$由中点坐标公式,得$E(1,1,\frac{1}{2}),F(1,\frac{1}{2},0),G(\frac{1}{2},1,0),H(\frac{1}{2},\frac{1}{2},1).$
(1)$\overrightarrow {AB_{1}}=(1,0,1),\overrightarrow {GE}=(\frac{1}{2},0,\frac{1}{2}),\overrightarrow {EH}=(-\frac{1}{2},-\frac{1}{2},\frac{1}{2}).$因为$\overrightarrow {AB_{1}} = 2\overrightarrow {GE},\overrightarrow {AB_{1}}\cdot \overrightarrow {EH}=1×(-\frac{1}{2})+0 + 1×\frac{1}{2}=0$,所以$\overrightarrow {AB_{1}}// \overrightarrow {GE},\overrightarrow {AB_{1}}\perp\overrightarrow {EH}$,即$AB_{1}// GE,AB_{1}\perp EH.$
(2)$\overrightarrow {A_{1}G}=(\frac{1}{2},1,-1),\overrightarrow {DF}=(1,-\frac{1}{2},0),\overrightarrow {DE}=(1,0,\frac{1}{2}).$因为$\overrightarrow {A_{1}G}\cdot \overrightarrow {DF}=\frac{1}{2}-\frac{1}{2}+0 = 0,\overrightarrow {A_{1}G}\cdot\overrightarrow {DE}=\frac{1}{2}+0-\frac{1}{2}=0$,所以$\overrightarrow {A_{1}G}\perp\overrightarrow {DF},\overrightarrow {A_{1}G}\perp\overrightarrow {DE}$,即$A_{1}G\perp DF,A_{1}G\perp DE.$因为$DF\cap DE = D,DF,DE\subset$平面EFD,所以$A_{1}G\perp$平面EFD.
答案: 证明:如图,以A为坐标原点,以$\{\overrightarrow {AB},\overrightarrow {AD},\overrightarrow {AA_{1}}\}$为正交基底建立空间直角坐标系.设正方体的棱长为1,则$A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),A_{1}(0,0,1),B_{1}(1,0,1),C_{1}(1,1,1).$由中点坐标公式,得$E(1,1,\frac{1}{2}),F(1,\frac{1}{2},0),G(\frac{1}{2},1,0),H(\frac{1}{2},\frac{1}{2},1).$
(1)$\overrightarrow {AB_{1}}=(1,0,1),\overrightarrow {GE}=(\frac{1}{2},0,\frac{1}{2}),\overrightarrow {EH}=(-\frac{1}{2},-\frac{1}{2},\frac{1}{2}).$因为$\overrightarrow {AB_{1}} = 2\overrightarrow {GE},\overrightarrow {AB_{1}}\cdot \overrightarrow {EH}=1×(-\frac{1}{2})+0 + 1×\frac{1}{2}=0$,所以$\overrightarrow {AB_{1}}// \overrightarrow {GE},\overrightarrow {AB_{1}}\perp\overrightarrow {EH}$,即$AB_{1}// GE,AB_{1}\perp EH.$
(2)$\overrightarrow {A_{1}G}=(\frac{1}{2},1,-1),\overrightarrow {DF}=(1,-\frac{1}{2},0),\overrightarrow {DE}=(1,0,\frac{1}{2}).$因为$\overrightarrow {A_{1}G}\cdot \overrightarrow {DF}=\frac{1}{2}-\frac{1}{2}+0 = 0,\overrightarrow {A_{1}G}\cdot\overrightarrow {DE}=\frac{1}{2}+0-\frac{1}{2}=0$,所以$\overrightarrow {A_{1}G}\perp\overrightarrow {DF},\overrightarrow {A_{1}G}\perp\overrightarrow {DE}$,即$A_{1}G\perp DF,A_{1}G\perp DE.$因为$DF\cap DE = D,DF,DE\subset$平面EFD,所以$A_{1}G\perp$平面EFD.

查看更多完整答案,请扫码查看

关闭