第95页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
9. 在解关于$x$,$y的方程组\begin{cases}ax - 2by = 8①, \\ 2x = by + 2② \end{cases} $时,小明由于将方程①中的“$-$”看成了“$+$”,得到的解为$\begin{cases}x = 2, \\ y = 1, \end{cases} $则原方程组的解为(
A.$\begin{cases}a = 2, \\ b = 2 \end{cases} $
B.$\begin{cases}x = 2, \\ y = 2 \end{cases} $
C.$\begin{cases}x = -2, \\ y = -3 \end{cases} $
D.$\begin{cases}x = 2, \\ y = 1 \end{cases} $
C
)A.$\begin{cases}a = 2, \\ b = 2 \end{cases} $
B.$\begin{cases}x = 2, \\ y = 2 \end{cases} $
C.$\begin{cases}x = -2, \\ y = -3 \end{cases} $
D.$\begin{cases}x = 2, \\ y = 1 \end{cases} $
答案:
C
10. 已知关于$x$,$y的方程x^{2m - n - 2} + 4y^{m + n + 1} = 6$是二元一次方程,则$m$,$n$的值分别为(
A.$1$,$-1$
B.$-1$,$1$
C.$\frac{1}{3}$,$-\frac{4}{3}$
D.$-\frac{1}{3}$,$\frac{4}{3}$
A
)A.$1$,$-1$
B.$-1$,$1$
C.$\frac{1}{3}$,$-\frac{4}{3}$
D.$-\frac{1}{3}$,$\frac{4}{3}$
答案:
A
11. 已知关于x,y的二元一次方程组$\begin{cases}2ax + by = 3, \\ ax - by = 1 \end{cases} $的解为$\begin{cases}x = 1, \\ y = -1, \end{cases} $则a - 2b =
2
。
答案:
2
12. 若$2(x - 2y - 3)^2 + |3y - x + 2| = 0$,则$2x - 3y = $
7
。
答案:
7
13. 若关于$x$,$y的二元一次方程组\begin{cases}3x - my = 5, \\ 2x + ny = 6 \end{cases} 的解是\begin{cases}x = 1, \\ y = 2, \end{cases} 则关于a$,$b的二元一次方程组\begin{cases}3(a + b) - m(a - b) = 5, \\ 2(a + b) + n(a - b) = 6 \end{cases} $的解是
$\left\{\begin{array}{l} a=\frac {3}{2},\\ b=-\frac {1}{2}\end{array}\right. $
。
答案:
$\left\{\begin{array}{l} a=\frac {3}{2},\\ b=-\frac {1}{2}\end{array}\right. $解析:利用整体思想把"$a+b$"和"$a-b$"分别看成一个整体,由$\left\{\begin{array}{l} 3x-my=5,\\ 2x+ny=6\end{array}\right. $的解是$\left\{\begin{array}{l} x=1,\\ y=2,\end{array}\right. $可得$\left\{\begin{array}{l} a+b=1,\\ a-b=2,\end{array}\right. $解得$\left\{\begin{array}{l} a=\frac {3}{2},\\ b=-\frac {1}{2}.\end{array}\right. $
14. 用加减消元法解下面的方程组:
(1)$\begin{cases}x + 4y = 14, \\ \frac{x - 3}{4} - \frac{y - 3}{3} = \frac{1}{12}; \end{cases} $
(2)$\frac{x + y}{2} = \frac{2x - y}{3} = x + 2$。
(1)$\begin{cases}x + 4y = 14, \\ \frac{x - 3}{4} - \frac{y - 3}{3} = \frac{1}{12}; \end{cases} $
(2)$\frac{x + y}{2} = \frac{2x - y}{3} = x + 2$。
答案:
(1)$\left\{\begin{array}{l} x=3,\\ y=\frac {11}{4}\end{array}\right. $
(2)$\left\{\begin{array}{l} x=-5,\\ y=-1\end{array}\right. $
(1)$\left\{\begin{array}{l} x=3,\\ y=\frac {11}{4}\end{array}\right. $
(2)$\left\{\begin{array}{l} x=-5,\\ y=-1\end{array}\right. $
15. (2024·湘潭期末)若关于$x$,$y的方程组\begin{cases}2x + 3y = 3, \\ ax - by = -5 \end{cases} 和\begin{cases}3x - 2y = 11, \\ bx - ay = 1 \end{cases} $有相同的解。求:
(1)这个相同的解;
(2)$(a + b)^{2024}$的值。
(1)这个相同的解;
(2)$(a + b)^{2024}$的值。
答案:
(1)解方程组$\left\{\begin{array}{l} 2x+3y=3,\\ 3x-2y=11,\end{array}\right. $得$\left\{\begin{array}{l} x=3,\\ y=-1,\end{array}\right. $所以这个相同的解为$\left\{\begin{array}{l} x=3,\\ y=-1\end{array}\right. $
(2)把$\left\{\begin{array}{l} x=3,\\ y=-1\end{array}\right. $代入$\left\{\begin{array}{l} ax-by=-5,\\ bx-ay=1,\end{array}\right. $得$\left\{\begin{array}{l} 3a+b=-5,\\ 3b+a=1,\end{array}\right. $所以$a+b=-1$.所以$(a+b)^{2024}=1$
(1)解方程组$\left\{\begin{array}{l} 2x+3y=3,\\ 3x-2y=11,\end{array}\right. $得$\left\{\begin{array}{l} x=3,\\ y=-1,\end{array}\right. $所以这个相同的解为$\left\{\begin{array}{l} x=3,\\ y=-1\end{array}\right. $
(2)把$\left\{\begin{array}{l} x=3,\\ y=-1\end{array}\right. $代入$\left\{\begin{array}{l} ax-by=-5,\\ bx-ay=1,\end{array}\right. $得$\left\{\begin{array}{l} 3a+b=-5,\\ 3b+a=1,\end{array}\right. $所以$a+b=-1$.所以$(a+b)^{2024}=1$
16. (新考法·新定义题)定义运算“$*$”,其运算法则如下:$x * y = ax + by$,其中$a$,$b$是常数。已知$2 * 1 = 4$,$(-1) * 3 = -9$。
(1)求$a$,$b$的值;
(2)若$\begin{cases}m * n = -1, \\ (2m) * (\frac{n}{2}) = 4, \end{cases} 求m$,$n$的值。
(1)求$a$,$b$的值;
(2)若$\begin{cases}m * n = -1, \\ (2m) * (\frac{n}{2}) = 4, \end{cases} 求m$,$n$的值。
答案:
(1)因为$x*y=ax+by,2*1=4,(-1)*3=-9$,所以$\left\{\begin{array}{l} 2a+b=4①,\\ -a+3b=-9②.\end{array}\right. $①+②×2,得$7b=-14$,解得$b=-2$.把$b=-2$代入①,得$a=3$.所以$a=3,b=-2$
(2)根据题意,得$\left\{\begin{array}{l} 3m-2n=-1③,\\ 6m-n=4\enclose{circle} {4},\end{array}\right. $④×2-③,得$9m=9$,解得$m=1$.把$m=1$代入③,得$n=2$.所以$m=1,n=2$
(1)因为$x*y=ax+by,2*1=4,(-1)*3=-9$,所以$\left\{\begin{array}{l} 2a+b=4①,\\ -a+3b=-9②.\end{array}\right. $①+②×2,得$7b=-14$,解得$b=-2$.把$b=-2$代入①,得$a=3$.所以$a=3,b=-2$
(2)根据题意,得$\left\{\begin{array}{l} 3m-2n=-1③,\\ 6m-n=4\enclose{circle} {4},\end{array}\right. $④×2-③,得$9m=9$,解得$m=1$.把$m=1$代入③,得$n=2$.所以$m=1,n=2$
查看更多完整答案,请扫码查看