2025年课堂点睛八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课堂点睛八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课堂点睛八年级数学上册北师大版》

1. 先化简,再求值.
(1)$\frac {4}{3}\sqrt {9a^{3}}+\sqrt {\frac {a}{4}}-a\sqrt {16a}$,其中$a= 2;$
(2)$2(a+\sqrt {3})(a-\sqrt {3})-a(a-\sqrt {2})+6$,其中$a= \sqrt {2}-1;$
答案: (1)解:原式$=\frac{4}{3}× 3a\sqrt{a}+\frac{\sqrt{a}}{2}-4a\sqrt{a}=4a\sqrt{a}+\frac{\sqrt{a}}{2}-4a\sqrt{a}=\frac{\sqrt{a}}{2}$,当$a=2$时,原式$=\frac{\sqrt{2}}{2}$.(2)解:原式$=2(a^{2}-3)-a^{2}+\sqrt{2}a+6=2a^{2}-6-a^{2}+\sqrt{2}a+6=a^{2}+\sqrt{2}a$,当$a=\sqrt{2}-1$时,原式$=(\sqrt{2}-1)^{2}+\sqrt{2}(\sqrt{2}-1)=3-2\sqrt{2}+2-\sqrt{2}=5-3\sqrt{2}$.
2. 已知$\sqrt {a-2027}+|b+2028|= 0$,求$\sqrt {(a+b)^{2}}$的值.
答案: 解:$\because \sqrt{a-2027}+\vert b+2028\vert =0$,$\therefore a-2027=0$,$b+2028=0$,$\therefore a=2027$,$b=-2028$,$\therefore \sqrt{(a+b)^{2}}=\sqrt{(2027-2028)^{2}}=1$.
3. 已知实数$x,y满足x-2\sqrt {x-3}+\sqrt {y-2}= 2$,求$\frac {\sqrt {x}}{\sqrt {x+y}}$的值.
答案: 解:$\because x-2\sqrt{x-3}+\sqrt{y-2}=2$,$\therefore x-3-2\sqrt{x-3}+1+\sqrt{y-2}=0$,$\therefore (\sqrt{x-3}-1)^{2}+\sqrt{y-2}=0$,$\therefore \sqrt{x-3}-1=0$,$\sqrt{y-2}=0$,解得$x=4$,$y=2$,则$\frac{\sqrt{x}}{\sqrt{x+y}}=\frac{\sqrt{4}}{\sqrt{4+2}}=\frac{\sqrt{6}}{3}$.
4. 已知$a= 2+\sqrt {3},b= 2-\sqrt {3}.$
(1)求$ab= $
1
;
(2)求$a^{2}+b^{2}-ab= $
13
.
答案: (1)1 (2)13
5. 在解决问题“已知$a= \frac {1}{\sqrt {2}-1}$,求$3a^{2}-6a-1$的值”时,小明是这样分析与解答的:
$\because a= \frac {1}{\sqrt {2}-1}= \frac {\sqrt {2}+1}{(\sqrt {2}-1)(\sqrt {2}+1)}= \sqrt {2}+1,$
$\therefore a-1= \sqrt {2},$
$\therefore (a-1)^{2}= 2,a^{2}-2a+1= 2.$
$\therefore a^{2}-2a= 1.$
$\therefore 3a^{2}-6a= 3,3a^{2}-6a-1= 2.$
请你根据小明的分析过程,解决如下问题:
若$a= \frac {2}{3-\sqrt {7}}$,求$2a^{2}-12a+1$的值.
答案: 解:$\because a=\frac{2}{3-\sqrt{7}}=\frac{2(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}=\frac{2(3+\sqrt{7})}{2}=3+\sqrt{7}$,$\therefore a-3=\sqrt{7}$,$\therefore (a-3)^{2}=7$.即$a^{2}-6a+9=7$.$\therefore a^{2}-6a=-2$.$\therefore 2a^{2}-12a=-4$.$\therefore 2a^{2}-12a+1=-4+1=-3$.即$2a^{2}-12a+1$的值为$-3$.

查看更多完整答案,请扫码查看

关闭