第77页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
4. 如图,在Rt△ABC中,∠ABC = 90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E,连接DE.
(1)求证:MD = ME;
(2)连接OD,OE,当∠C = 30°时,求证:四边形ODME是菱形.

(1)求证:MD = ME;
(2)连接OD,OE,当∠C = 30°时,求证:四边形ODME是菱形.
答案:
(1)在$Rt\triangle ABC$中,点$M$是$AC$的中点,$\therefore MA = MB$,$\therefore \angle A=\angle MBA$. $\because$ 四边形$ABED$是圆内接四边形,$\therefore \angle ADE +\angle ABE=180^{\circ}$. 而$\angle ADE+\angle MDE = 180^{\circ}$,$\therefore \angle MDE=\angle MBA$. 同理可得:$\angle MED=\angle A$,$\therefore \angle MDE=\angle MED$,$\therefore MD = ME$.
(2)$\because \angle C = 30^{\circ}$,$\therefore \angle A=60^{\circ}$,$\therefore \angle ABM=60^{\circ}$,$\therefore \triangle OAD$和$\triangle OBE$为等边三角形,$\therefore \angle BOE=60^{\circ}$,$\therefore \angle BOE=\angle A$,$\therefore OE// AC$. 同理可得$OD// BM$,$\therefore$ 四边形$DOEM$为平行四边形. 又$\because OD = OE$,$\therefore$ 四边形$ODME$是菱形.
(2)$\because \angle C = 30^{\circ}$,$\therefore \angle A=60^{\circ}$,$\therefore \angle ABM=60^{\circ}$,$\therefore \triangle OAD$和$\triangle OBE$为等边三角形,$\therefore \angle BOE=60^{\circ}$,$\therefore \angle BOE=\angle A$,$\therefore OE// AC$. 同理可得$OD// BM$,$\therefore$ 四边形$DOEM$为平行四边形. 又$\because OD = OE$,$\therefore$ 四边形$ODME$是菱形.
1. 如图,C,D是⊙O上直径AB两侧的两点,设∠ABC = 25°,则∠BDC = (

A.85°
B.75°
C.70°
D.65°
D
).A.85°
B.75°
C.70°
D.65°
答案:
D.
2. 如图,在⊙O中,弦AB = 3 cm,∠ACB = 60°,求⊙O的直径.

答案:
连接$OA$,$OB$,过$O$点作$OE\perp AB$于点$E$. 则$AE=\frac{1}{2}AB=\frac{3}{2}$. $\because \angle ACB = 60^{\circ}$,$\therefore \angle AOB=120^{\circ}$,$\therefore \angle OAE=30^{\circ}$. 设$OE = x$,则$OA=2x$. 在$Rt\triangle AOE$中,$AE^{2}+EO^{2}=OA^{2}$,$(\frac{3}{2})^{2}+x^{2}=(2x)^{2}$,解得$x=\frac{\sqrt{3}}{2}$,$\therefore OA=\sqrt{3}$,$\therefore \odot O$的直径为$2\sqrt{3}\ cm$.
如图,⊙O的内接四边形ABCD的两组对边的延长线分别交于点E,F.
(1)若∠E = ∠F,求证:∠ADC = ∠ABC;
(2)若∠E = ∠F = 42°,求∠A的度数;
(3)若∠E = α,∠F = β,且α ≠ β,请用含α,β的代数式表示∠A的大小.

(1)若∠E = ∠F,求证:∠ADC = ∠ABC;
(2)若∠E = ∠F = 42°,求∠A的度数;
(3)若∠E = α,∠F = β,且α ≠ β,请用含α,β的代数式表示∠A的大小.
答案:
(1)$\because \angle E=\angle F$,$\angle DCE=\angle BCF$,$\angle ADC=\angle E +\angle DCE$,$\angle ABC=\angle F+\angle BCF$,$\therefore \angle ADC=\angle ABC$.
(2)解:由(1)可知,$\angle ADC=\angle ABC$,$\because \angle ABC +\angle ADC=180^{\circ}$,$\therefore \angle ABC=\angle ADC=90^{\circ}$,$\therefore \angle A=180^{\circ}-\angle ABC-\angle E=180^{\circ}-90^{\circ}-42^{\circ}=48^{\circ}$.
(3)解:如图,连接$EF$,$\because$ 四边形$ABCD$为$\odot O$的内接四边形,
$\therefore \angle ECD=\angle A$. $\because \angle ECD=\angle 1+\angle 2$,$\therefore \angle A=\angle 1+\angle 2$. $\because \angle A+\angle 1+\angle 2+\angle AEB+\angle AFD=180^{\circ}$,$\therefore 2\angle A+\alpha+\beta=180^{\circ}$,$\therefore \angle A=90^{\circ}-\frac{\alpha+\beta}{2}$.
(1)$\because \angle E=\angle F$,$\angle DCE=\angle BCF$,$\angle ADC=\angle E +\angle DCE$,$\angle ABC=\angle F+\angle BCF$,$\therefore \angle ADC=\angle ABC$.
(2)解:由(1)可知,$\angle ADC=\angle ABC$,$\because \angle ABC +\angle ADC=180^{\circ}$,$\therefore \angle ABC=\angle ADC=90^{\circ}$,$\therefore \angle A=180^{\circ}-\angle ABC-\angle E=180^{\circ}-90^{\circ}-42^{\circ}=48^{\circ}$.
(3)解:如图,连接$EF$,$\because$ 四边形$ABCD$为$\odot O$的内接四边形,
查看更多完整答案,请扫码查看