2025年同步导学与优化训练七年级数学上册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年同步导学与优化训练七年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第44页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
1. $|-2024|$的相反数的倒数是(
A.$2024$
B.$\frac{1}{2024}$
C.$-\frac{1}{2024}$
D.$-2024$
C
)A.$2024$
B.$\frac{1}{2024}$
C.$-\frac{1}{2024}$
D.$-2024$
答案:
C 解析:$|-2024|=2024$,所以$|-2024|$的相反数的倒数是$-\dfrac{1}{2024}$.
2. 有下列各数:$-(-1)$,$-2^{3}$,$(-\frac{4}{3})^{4}$,$-\frac{2^{2}}{3}$,$(-1)^{2023}$,$-|-4|$.其中负数有(
A.$2$个
B.$3$个
C.$4$个
D.$5$个
4个
)A.$2$个
B.$3$个
C.$4$个
D.$5$个
答案:
C 解析:因为$-(-1)=1$是正数,$-2^{3}=-8$是负数,$\left(-\dfrac{4}{3}\right)^{4}=\dfrac{256}{81}$是正数,$-\dfrac{2^{2}}{3}=-\dfrac{4}{3}$是负数,$(-1)^{2023}=-1$是负数,$-|-4|=-4$是负数,所以负数有4个.
3. 代数式$2(a^{2}-b)$表示(
A.$2倍a的平方与b$的差
B.$a的平方与b的差的2$倍
C.$a的平方与b的2$倍的差
D.$a与b的平方差的2$倍
B
)A.$2倍a的平方与b$的差
B.$a的平方与b的差的2$倍
C.$a的平方与b的2$倍的差
D.$a与b的平方差的2$倍
答案:
B 解析:代数式$2(a^{2}-b)$表示$a$的平方与$b$的差的2倍.
4. 有下列代数式:①$1\frac{1}{3}x^{2}y$;②$ab÷ c^{3}$;③$\frac{2m}{n}$;④$\frac{a^{2}-b^{2}}{5}$;⑤$2(m + n)$;⑥$mb\cdot4$;⑦$a - 3\mathrm{km}$.其中符合代数式书写规范的有(
A.$1$个
B.$2$个
C.$3$个
D.$4$个
C
)A.$1$个
B.$2$个
C.$3$个
D.$4$个
答案:
C
5. 若$a + b = \frac{1}{2}$,则代数式$2a + 2b - 3$的值是(
A.$2$
B.$-2$
C.$-4$
D.$-3\frac{1}{2}$
-2
)A.$2$
B.$-2$
C.$-4$
D.$-3\frac{1}{2}$
答案:
B 解析:因为$2a+2b=2(a+b)=2×\dfrac{1}{2}=1$,所以$2a+2b-3=1-3=-2$.
6. 下面各选项中的两个量,成反比例关系的是(
A.汽车行驶的速度一定,行驶的时间和路程
B.长方形的周长一定,长和宽
C.练习本的单价一定,购买的数量和总价
D.圆柱的体积一定,它的底面积和高
D
)A.汽车行驶的速度一定,行驶的时间和路程
B.长方形的周长一定,长和宽
C.练习本的单价一定,购买的数量和总价
D.圆柱的体积一定,它的底面积和高
答案:
D 解析:选项A,路程÷时间=速度(一定),是比值一定,成正比例关系;选项B,长+宽=周长÷2(一定),是和一定,不成比例关系;选项C,总价÷数量=单价(一定),是比值一定,成正比例关系;选项D,圆柱的底面积×高=体积(一定),是乘积一定,成反比例关系.
7. 用十进制记数法表示正整数,如$365 = 300 + 60 + 5 = 3×10^{2} + 6×10^{1} + 5×10^{0}$,用二进制记数法来表示正整数,如$5 = 4 + 1 = 1×2^{2} + 0×2^{1} + 1$,记作$5 = (101)_{2}$,$14 = 8 + 4 + 2 = 1×2^{3} + 1×2^{2} + 1×2^{1} + 0×2^{0}$,记作$14 = (1110)_{2}$,则$(1010110)_{2}$表示数(
A.$60$
B.$72$
C.$86$
D.$132$
C
)A.$60$
B.$72$
C.$86$
D.$132$
答案:
C 解析:$(1010110)_{2}=1×2^{6}+0×2^{5}+1×2^{4}+0×2^{3}+1×2^{2}+1×2^{1}+0×2^{0}=86$.
8. 按图示的运算程序,若输入$m的值是-2$,则输出的结果是(

A.$-1$
B.$3$
C.$-5$
D.$7$
C
)A.$-1$
B.$3$
C.$-5$
D.$7$
答案:
C 解析:当$m=-2$时,代入$2m-1$,得$2×(-2)-1=-5$.
9. 若$a与b$互为相反数,$c与d$互为倒数,$m的绝对值是2$,则$a + b - m^{2} + cd$的值为(
A.$3$
B.$-3$
C.$5$
D.$-5$
B
)A.$3$
B.$-3$
C.$5$
D.$-5$
答案:
B 解析:因为$a$与$b$互为相反数,$c$与$d$互为倒数,$m$的绝对值是2,所以$a+b=0$,$cd=1$,$m=\pm2$,所以$a+b-m^{2}+cd=0-4+1=-3$.
10. 观察下列算式:$3^{1} = 3$,$3^{2} = 9$,$3^{3} = 27$,$3^{4} = 81$,$3^{5} = 243$,$3^{6} = 729$,$3^{7} = 2187$,$3^{8} = 6561……则3^{2024}$的末位数字是(
A.$3$
B.$9$
C.$7$
D.$1$
1
)A.$3$
B.$9$
C.$7$
D.$1$
答案:
D 解析:由题意可知,这些算式结果的末位数字是3,9,7,1中的一个,且每4个数字一循环.因为$2024÷4=506$,所以$3^{2024}$的末位数字和$3^{4}$的末位数字相同,即末位数字是1.
11. 某校计划给每个年级配发$n$套劳动工具,则$3$个年级共需配发
3n
套劳动工具.
答案:
$3n$ 解析:因为给每个年级配发$n$套劳动工具,所以3个年级共需配发$3n$套劳动工具.
12. 全世界人口已达$80$亿.将$80$亿用科学记数法表示为
$8×10^{9}$
.
答案:
$8×10^{9}$ 解析:80亿$=8000000000=8×10^{9}$.
13. (新定义题)定义:$[x]表示不大于x$的最大整数,$(x)表示不小于x$的最小整数.例如:$[2.3] = 2$,$(2.3) = 3$,$[-2.3] = -3$,$(-2.3) = -2$.则$[1.7] + (-1.7) = $
0
.
答案:
0 解析:原式$=1+(-1)=0$.
查看更多完整答案,请扫码查看