第15页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
13. (8分)计算:
(1)$\frac{x^2 - 4x + 4}{x^2 - 1}\cdot\frac{x + 1}{x^2 - 2x}+\frac{1}{x - 1}$;
(2)[2024泸州]$(\frac{y^2}{x}+x - 2y)÷\frac{x^2 - y^2}{x}$.
(1)$\frac{x^2 - 4x + 4}{x^2 - 1}\cdot\frac{x + 1}{x^2 - 2x}+\frac{1}{x - 1}$;
(2)[2024泸州]$(\frac{y^2}{x}+x - 2y)÷\frac{x^2 - y^2}{x}$.
答案:
【解】
(1)原式$=\frac {(x-2)^{2}}{(x+1)(x-1)}\cdot \frac {x+1}{x(x-2)}+\frac {1}{x-1}$$=\frac {x-2}{x(x-1)}+\frac {1}{x-1}=\frac {x-2+x}{x(x-1)}=\frac {2}{x}.$
(2)原式$=\frac {y^{2}+x^{2}-2xy}{x}÷\frac {(x+y)(x-y)}{x}$$=\frac {(x-y)^{2}}{x}\cdot \frac {x}{(x+y)(x-y)}$$=\frac {x-y}{x+y}.$
(1)原式$=\frac {(x-2)^{2}}{(x+1)(x-1)}\cdot \frac {x+1}{x(x-2)}+\frac {1}{x-1}$$=\frac {x-2}{x(x-1)}+\frac {1}{x-1}=\frac {x-2+x}{x(x-1)}=\frac {2}{x}.$
(2)原式$=\frac {y^{2}+x^{2}-2xy}{x}÷\frac {(x+y)(x-y)}{x}$$=\frac {(x-y)^{2}}{x}\cdot \frac {x}{(x+y)(x-y)}$$=\frac {x-y}{x+y}.$
14. (8分)先化简,再求值:$\frac{a}{a - b}÷\frac{a^2 - b^2}{a^2 - 2ab + b^2}-\frac{a - b}{a + b}$,其中$a,b满足b - 2a = 0$.
答案:
【解】原式$=\frac {a}{a-b}\cdot \frac {(a-b)^{2}}{(a+b)(a-b)}-\frac {a-b}{a+b}=\frac {a}{a+b}-$$\frac {a-b}{a+b}=\frac {b}{a+b}.$$\because b-2a=0,\therefore b=2a$.
∴原式$=\frac {2a}{a+2a}=\frac {2}{3}.$
∴原式$=\frac {2a}{a+2a}=\frac {2}{3}.$
15. (8分)已知$\frac{3x^2 - 7x + 2}{(x - 1)(x + 1)}= 3+\frac{a}{x - 1}+\frac{b}{x + 1}$是恒等式,请分别求$a,b$的值.
答案:
【解】因为$\frac {3x^{2}-7x+2}{(x-1)(x+1)}=3+\frac {a}{x-1}+\frac {b}{x+1}$是恒等式,且$3+\frac {a}{x-1}+\frac {b}{x+1}=\frac {3(x-1)(x+1)+a(x+1)+b(x-1)}{(x-1)(x+1)}=$$\frac {3x^{2}+(a+b)x+a-b-3}{(x-1)(x+1)}$,所以$3x^{2}-7x+2=3x^{2}+(a+b)x+a-b-3.$所以$\left\{\begin{array}{l} a+b=-7,\\ a-b-3=2,\end{array}\right. $解得$\left\{\begin{array}{l} a=-1,\\ b=-6.\end{array}\right. $
16. (10分)已知:$A = (\frac{x}{x - 1}-\frac{x}{x^2 - 1})÷\frac{x^2 - x}{x^2 - 2x + 1}$.
(1)化简$A$;
(2)若$x是不等式组\begin{cases}2x + 5\geq3\frac{1 - 3x}{2}\gt - 4\end{cases} $的整数解,求$A$的值.
(1)化简$A$;
(2)若$x是不等式组\begin{cases}2x + 5\geq3\frac{1 - 3x}{2}\gt - 4\end{cases} $的整数解,求$A$的值.
答案:
【解】
(1)$A=\frac {x(x+1)-x}{(x+1)(x-1)}\cdot \frac {(x-1)^{2}}{x(x-1)}=\frac {x^{2}}{(x+1)(x-1)}\cdot$$\frac {x-1}{x}=\frac {x}{x+1}.$
(2)$\left\{\begin{array}{l} 2x+5≥3,①\\ \frac {1-3x}{2}>-4,②\end{array}\right. $由①得$x≥-1$,由②得$x<3,$
∴不等式组的解集为$-1≤x<3.$
∴不等式组的整数解为-1,0,1,2.又$\because x+1≠0,x-1≠0,x≠0,\therefore x≠\pm 1$且$x≠0.$
∴当$x=2$时,$A=\frac {2}{3}.$
(1)$A=\frac {x(x+1)-x}{(x+1)(x-1)}\cdot \frac {(x-1)^{2}}{x(x-1)}=\frac {x^{2}}{(x+1)(x-1)}\cdot$$\frac {x-1}{x}=\frac {x}{x+1}.$
(2)$\left\{\begin{array}{l} 2x+5≥3,①\\ \frac {1-3x}{2}>-4,②\end{array}\right. $由①得$x≥-1$,由②得$x<3,$
∴不等式组的解集为$-1≤x<3.$
∴不等式组的整数解为-1,0,1,2.又$\because x+1≠0,x-1≠0,x≠0,\therefore x≠\pm 1$且$x≠0.$
∴当$x=2$时,$A=\frac {2}{3}.$
17. (14分)新考法 从特殊到一般的思想 观察下列式子:
$\frac{1}{2}= \frac{1}{1×2}= \frac{1}{1}-\frac{1}{2};\frac{1}{6}= \frac{1}{2×3}= \frac{1}{2}-\frac{1}{3};\frac{1}{12}= \frac{1}{3×4}= \frac{1}{3}-\frac{1}{4};\frac{1}{20}= \frac{1}{4×5}= \frac{1}{4}-\frac{1}{5};…$
(1)由此可以推测:$\frac{1}{42}=$
(2)请猜想出能表示出上述式子的特点的一般规律,用含字母$n$的等式表示出来($n$为正整数),并证明;
(3)请用(2)中的规律计算:$\frac{1}{(x - 2)(x - 3)}-\frac{2}{(x - 1)(x - 3)}+\frac{1}{(x - 1)(x - 2)}$.
(2)一般规律为$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
证明:$\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}=\frac{1}{n(n+1)}$.
(3)原式$=\frac{1}{x-3}-\frac{1}{x-2}-(\frac{1}{x-3}-\frac{1}{x-1})+\frac{1}{x-2}-\frac{1}{x-1}$
$=\frac{1}{x-3}-\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-1}$
$=0$.
$\frac{1}{2}= \frac{1}{1×2}= \frac{1}{1}-\frac{1}{2};\frac{1}{6}= \frac{1}{2×3}= \frac{1}{2}-\frac{1}{3};\frac{1}{12}= \frac{1}{3×4}= \frac{1}{3}-\frac{1}{4};\frac{1}{20}= \frac{1}{4×5}= \frac{1}{4}-\frac{1}{5};…$
(1)由此可以推测:$\frac{1}{42}=$
$\frac{1}{6}-\frac{1}{7}$
,$\frac{1}{72}=$$\frac{1}{8}-\frac{1}{9}$
;(2)请猜想出能表示出上述式子的特点的一般规律,用含字母$n$的等式表示出来($n$为正整数),并证明;
(3)请用(2)中的规律计算:$\frac{1}{(x - 2)(x - 3)}-\frac{2}{(x - 1)(x - 3)}+\frac{1}{(x - 1)(x - 2)}$.
(2)一般规律为$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
证明:$\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}=\frac{1}{n(n+1)}$.
(3)原式$=\frac{1}{x-3}-\frac{1}{x-2}-(\frac{1}{x-3}-\frac{1}{x-1})+\frac{1}{x-2}-\frac{1}{x-1}$
$=\frac{1}{x-3}-\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-1}$
$=0$.
答案:
【解】
(1)$\frac {1}{6}-\frac {1}{7};\frac {1}{8}-\frac {1}{9}$
(2)一般规律为$\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}.$证明:$\frac {1}{n}-\frac {1}{n+1}=\frac {n+1}{n(n+1)}-\frac {n}{n(n+1)}=\frac {1}{n(n+1)}.$
(3)原式$=\frac {1}{x-3}-\frac {1}{x-2}-(\frac {1}{x-3}-\frac {1}{x-1})+\frac {1}{x-2}-\frac {1}{x-1}$$=\frac {1}{x-3}-\frac {1}{x-2}-\frac {1}{x-3}+\frac {1}{x-1}+\frac {1}{x-2}-\frac {1}{x-1}$$=0.$
(1)$\frac {1}{6}-\frac {1}{7};\frac {1}{8}-\frac {1}{9}$
(2)一般规律为$\frac {1}{n(n+1)}=\frac {1}{n}-\frac {1}{n+1}.$证明:$\frac {1}{n}-\frac {1}{n+1}=\frac {n+1}{n(n+1)}-\frac {n}{n(n+1)}=\frac {1}{n(n+1)}.$
(3)原式$=\frac {1}{x-3}-\frac {1}{x-2}-(\frac {1}{x-3}-\frac {1}{x-1})+\frac {1}{x-2}-\frac {1}{x-1}$$=\frac {1}{x-3}-\frac {1}{x-2}-\frac {1}{x-3}+\frac {1}{x-1}+\frac {1}{x-2}-\frac {1}{x-1}$$=0.$
查看更多完整答案,请扫码查看