2025年阳光学业评价八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年阳光学业评价八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年阳光学业评价八年级数学上册人教版》

3. 在$\triangle ABC$中,$∠A-∠B= 20^{\circ}$,$∠C= 2∠B$. 求$\triangle ABC$三个内角的度数.
答案: 设$\angle B = x^{\circ}$。
根据题意,有$\angle A = x^{\circ} + 20^{\circ}$,$\angle C = 2x^{\circ}$。
根据三角形内角和定理,$\angle A + \angle B + \angle C = 180^{\circ}$,
代入得:
$x + (x + 20) + 2x = 180$
$4x + 20 = 180$
$4x = 160$
$x = 40$
所以,
$\angle B = 40^{\circ}$,
$\angle A = 40^{\circ} + 20^{\circ} = 60^{\circ}$,
$\angle C = 2 × 40^{\circ} = 80^{\circ}$。
答题卡填写:
$\angle A = 60^{\circ}$,
$\angle B = 40^{\circ}$,
$\angle C = 80^{\circ}$。
4. 如图,$AB和CD相交于点P$,$∠B= ∠C$. 求证:$∠A= ∠D$.
答案: 证明:在△APC和△DPB中,
∵∠APC与∠DPB是对顶角,
∴∠APC=∠DPB(对顶角相等)。
∵∠A+∠C+∠APC=180°,∠D+∠B+∠DPB=180°(三角形内角和定理),
∴∠A=180°-∠C-∠APC,∠D=180°-∠B-∠DPB。
∵∠B=∠C,∠APC=∠DPB,
∴∠A=∠D。
1. 求下列直角三角形中未知角的度数:$\angle 1= $
$45^{\circ}$
;$\angle 2= $
$30^{\circ}$
;$\angle 3= $
$55^{\circ}$
.
答案: $45^{\circ}$;$30^{\circ}$;$55^{\circ}$
2. 如图,在$\mathrm{Rt}\triangle ABC$中,$\angle C= 90^{\circ}$,则$\angle B$的度数是
$35^{\circ}$
.
答案: $35^{\circ}$

查看更多完整答案,请扫码查看

关闭