3. 计算$2017×1983= $____.
答案:
3999711
4. 计算:
(1)$(-2x^{2}+\frac{1}{2})(-2x^{2}-\frac{1}{2})$;
(2)$(\frac{1}{2}x^{2}y^{2}+3m)(-3m+\frac{1}{2}x^{2}y^{2})$;
(3)$9.6×10.4$.
(1)$(-2x^{2}+\frac{1}{2})(-2x^{2}-\frac{1}{2})$;
(2)$(\frac{1}{2}x^{2}y^{2}+3m)(-3m+\frac{1}{2}x^{2}y^{2})$;
(3)$9.6×10.4$.
答案:
解
(1)$\left(-2x^{2}+\dfrac{1}{2}\right)\left(-2x^{2}-\dfrac{1}{2}\right)=(-2x^{2})^{2}-\left(\dfrac{1}{2}\right)^{2}=4x^{4}-\dfrac{1}{4}$.
(2)$\left(\dfrac{1}{2}x^{2}y^{2}+3m\right)\left(-3m+\dfrac{1}{2}x^{2}y^{2}\right)=\left(\dfrac{1}{2}x^{2}y^{2}\right)^{2}-(3m)^{2}=\dfrac{1}{4}x^{4}y^{4}-9m^{2}$.
(3)$9.6×10.4=(10-0.4)(10+0.4)=100-0.16=99.84$.
(1)$\left(-2x^{2}+\dfrac{1}{2}\right)\left(-2x^{2}-\dfrac{1}{2}\right)=(-2x^{2})^{2}-\left(\dfrac{1}{2}\right)^{2}=4x^{4}-\dfrac{1}{4}$.
(2)$\left(\dfrac{1}{2}x^{2}y^{2}+3m\right)\left(-3m+\dfrac{1}{2}x^{2}y^{2}\right)=\left(\dfrac{1}{2}x^{2}y^{2}\right)^{2}-(3m)^{2}=\dfrac{1}{4}x^{4}y^{4}-9m^{2}$.
(3)$9.6×10.4=(10-0.4)(10+0.4)=100-0.16=99.84$.
5. 如图,圆环形绿地的面积为____$m^{2}$(结果保留$\pi$).

答案:
400π
6. 计算:
(1)$2026^{2}-2025×2027$;
(2)$(\frac{1}{3}x+y)(\frac{1}{3}x-y)(\frac{1}{9}x^{2}+y^{2})$;
(3)$(-3x-2y)(2y-3x)-(5y-3x)\cdot(3x+5y)$.
(1)$2026^{2}-2025×2027$;
(2)$(\frac{1}{3}x+y)(\frac{1}{3}x-y)(\frac{1}{9}x^{2}+y^{2})$;
(3)$(-3x-2y)(2y-3x)-(5y-3x)\cdot(3x+5y)$.
答案:
解
(1)$2026^{2}-2025×2027=2026^{2}-(2026-1)×(2026+1)=2026^{2}-(2026^{2}-1)=2026^{2}-2026^{2}+1=1$.
(2)$\left(\dfrac{1}{3}x+y\right)\left(\dfrac{1}{3}x-y\right)\left(\dfrac{1}{9}x^{2}+y^{2}\right)=\left(\dfrac{1}{9}x^{2}-y^{2}\right)\left(\dfrac{1}{9}x^{2}+y^{2}\right)=\dfrac{1}{81}x^{4}-y^{4}$.
(3)$(-3x-2y)(2y-3x)-(5y-3x)(3x+5y)=9x^{2}-4y^{2}-25y^{2}+9x^{2}=18x^{2}-29y^{2}$.
(1)$2026^{2}-2025×2027=2026^{2}-(2026-1)×(2026+1)=2026^{2}-(2026^{2}-1)=2026^{2}-2026^{2}+1=1$.
(2)$\left(\dfrac{1}{3}x+y\right)\left(\dfrac{1}{3}x-y\right)\left(\dfrac{1}{9}x^{2}+y^{2}\right)=\left(\dfrac{1}{9}x^{2}-y^{2}\right)\left(\dfrac{1}{9}x^{2}+y^{2}\right)=\dfrac{1}{81}x^{4}-y^{4}$.
(3)$(-3x-2y)(2y-3x)-(5y-3x)(3x+5y)=9x^{2}-4y^{2}-25y^{2}+9x^{2}=18x^{2}-29y^{2}$.
7. (1)计算下列算式:
$\begin{cases}8×8= $_________,\\7×9= _________$,\end{cases}, \begin{cases}5×5= $_________,\\4×6= _________$,\end{cases}, \begin{cases}12×12= $_________,\\11×13= _________$.\end{cases}. $
(2)从以上的过程中,你发现了什么规律?请用字母表示出来.
(3)请用你学过的数学知识说明你发现的规律的正确性.
$\begin{cases}8×8= $_________,\\7×9= _________$,\end{cases}, \begin{cases}5×5= $_________,\\4×6= _________$,\end{cases}, \begin{cases}12×12= $_________,\\11×13= _________$.\end{cases}. $
(2)从以上的过程中,你发现了什么规律?请用字母表示出来.
(3)请用你学过的数学知识说明你发现的规律的正确性.
答案:
解
(1)计算可得$\begin{cases}8×8=64, \\7×9=63, \end{cases}\begin{cases}5×5=25, \\4×6=24, \end{cases}\begin{cases}12×12=144, \\11×13=143. \end{cases}$
(2)$(n-1)(n+1)=n^{2}-1$.
(3)由平方差公式$(a+b)(a-b)=a^{2}-b^{2}$可知,当$a=n$,$b=1$时,有$(n-1)(n+1)=n^{2}-1$成立.
(1)计算可得$\begin{cases}8×8=64, \\7×9=63, \end{cases}\begin{cases}5×5=25, \\4×6=24, \end{cases}\begin{cases}12×12=144, \\11×13=143. \end{cases}$
(2)$(n-1)(n+1)=n^{2}-1$.
(3)由平方差公式$(a+b)(a-b)=a^{2}-b^{2}$可知,当$a=n$,$b=1$时,有$(n-1)(n+1)=n^{2}-1$成立.
完全平方公式
两个数的和(或差)的平方,等于它们的____,加上(或减去)它们的积的____.
用字母表示为$(a + b)^2 = $____,$(a - b)^2 = $____.
两个数的和(或差)的平方,等于它们的____,加上(或减去)它们的积的____.
用字母表示为$(a + b)^2 = $____,$(a - b)^2 = $____.
答案:
平方和 2倍 $a^{2}+2ab+b^{2}$ $a^{2}-2ab+b^{2}$
查看更多完整答案,请扫码查看