2025年绩优学案九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绩优学案九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年绩优学案九年级数学上册人教版》

1. 如图,二次函数 $ y = ax^{2} + bx + c(a \neq 0) $ 的图象的对称轴是直线 $ x = 1 $,则以下四个结论中:① $ abc > 0 $,② $ 2a + b = 0 $,③ $ 4a + b^{2} < 4ac $,④ $ 3a + c < 0 $。正确的个数是 (
B
)

A.1
B.2
C.3
D.4
答案: B
2. 二次函数 $ y = ax^{2} + bx + c $ 的图象如图所示,且 $ P = |2a + b| + |3b - 2c| $,$ Q = |2a - b| - |3b + 2c| $,则 $ P $,$ Q $ 的大小关系是
P>Q

答案: P>Q
3. 在同一坐标系中,一次函数 $ y = ax + 2 $ 与二次函数 $ y = x^{2} + a $ 的图象可能是 (
C
)
答案: C
4. 已知函数 $ y = (x - a)(x - b) $(其中 $ a > b $)的图象如图所示,则函数 $ y = ax + b $ 的图象可能是 (
D
)

答案: D
5. 二次函数 $ y = ax^{2} + bx + c(a \neq 0) $ 的图象如图所示,则当函数值 $ y > 0 $ 时,$ x $ 的取值范围是 (
D
)

A.$ x < -1 $
B.$ x > 3 $
C.$ -1 < x < 3 $
D.$ x < -1 $ 或 $ x > 3 $
答案: D
6. 如图,直线 $ y = x + m $ 和抛物线 $ y = x^{2} + bx + c $ 都经过点 $ A(1,0) $,$ B(3,2) $。
(1) 求 $ m $ 的值和抛物线的解析式;
(2) 求不等式 $ x^{2} + bx + c > x + m $ 的解集(直接写出答案);
(3) 若 $ M(a,y_{1}) $,$ N(a + 1,y_{2}) $ 两点都在抛物线 $ y = x^{2} + bx + c $ 上,试比较 $ y_{1} $ 与 $ y_{2} $ 的大小。
答案: 解:
(1)m=-1,y=x²-3x+2
(2)由函数图象可知,当x<1或x>3时,不等式x²+bx+c>x+m。
(3)将M(a,y₁),N(a+1,y₂)两点代入y=x²-3x+2,得y₁=a²-3a+2,y₂=(a+1)²-3(a+1)+2=a²-a。则y₁-y₂=a²-3a+2-(a²-a)=2-2a。①当2-2a>0,即a<1时,y₁>y₂;②当2-2a=0,即a=1时,y₁=y₂;③当2-2a<0,即a>1时,y₁<y₂。所以当a<1时,y₁>y₂;当a=1时,y₁=y₂;当a>1时,y₁<y₂。

查看更多完整答案,请扫码查看

关闭