17. 如图,已知$ \angle AEF = \angle DEC $,$ AE = DE $,$ \angle C = \angle F $. 求证$ \triangle AEC \cong \triangle DEF $.

答案:
证明:
∵∠AEF = ∠DEC,
∴∠AEF + ∠FEC = ∠DEC + ∠FEC,
即∠AEC = ∠DEF.
在△AEC和△DEF中,
$\begin{cases}∠C = ∠F \\∠AEC = ∠DEF \\AE = DE\end{cases}$
∴△AEC≌△DEF(AAS).
∵∠AEF = ∠DEC,
∴∠AEF + ∠FEC = ∠DEC + ∠FEC,
即∠AEC = ∠DEF.
在△AEC和△DEF中,
$\begin{cases}∠C = ∠F \\∠AEC = ∠DEF \\AE = DE\end{cases}$
∴△AEC≌△DEF(AAS).
18. 如图,在$ \triangle ABC $中找一点$ P $,使其到三个顶点的距离相等.
(1)$ P $是$ \triangle ABC $三条
(2)请用无刻度的直尺和圆规作出点$ P $的位置(保留作图痕迹,不写作法).

(1)$ P $是$ \triangle ABC $三条
垂直平分线
的交点;(填“中线”“高线”“角平分线”或“垂直平分线”)(2)请用无刻度的直尺和圆规作出点$ P $的位置(保留作图痕迹,不写作法).
答案:
(1)垂直平分线
(2)如图所示,点P为所求.
(1)垂直平分线
(2)如图所示,点P为所求.
查看更多完整答案,请扫码查看