4. 《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少? 如果设门的宽为x尺,根据题意,那么可列方程
$x^{2} + (x + 6)^{2} = 100$
.
答案:
解:设门的宽为$x$尺,则门的高为$(x + 6)$尺。
根据勾股定理,得$x^{2} + (x + 6)^{2} = 10^{2}$。
故答案为:$x^{2} + (x + 6)^{2} = 100$。
根据勾股定理,得$x^{2} + (x + 6)^{2} = 10^{2}$。
故答案为:$x^{2} + (x + 6)^{2} = 100$。
1. 解方程:
(1)$x(x-5)+x-5= 0$;
(2)$x^{2}-3x+1= 0$;
(3)$3x^{2}-1= 4x$;
(4)$(x+4)^{2}= 5(x+4)$.
(1)$x(x-5)+x-5= 0$;
(2)$x^{2}-3x+1= 0$;
(3)$3x^{2}-1= 4x$;
(4)$(x+4)^{2}= 5(x+4)$.
答案:
(1)解:$x(x-5)+x-5=0$
$(x-5)(x+1)=0$
$x-5=0$或$x+1=0$
$x_1=5$,$x_2=-1$
(2)解:$x^2 - 3x + 1 = 0$
$a=1$,$b=-3$,$c=1$
$\Delta = b^2 - 4ac = (-3)^2 - 4×1×1 = 9 - 4 = 5 > 0$
$x = \frac{3 ± \sqrt{5}}{2×1} = \frac{3 ± \sqrt{5}}{2}$
$x_1 = \frac{3 + \sqrt{5}}{2}$,$x_2 = \frac{3 - \sqrt{5}}{2}$
(3)解:$3x^2 - 1 = 4x$
$3x^2 - 4x - 1 = 0$
$a=3$,$b=-4$,$c=-1$
$\Delta = (-4)^2 - 4×3×(-1) = 16 + 12 = 28 > 0$
$x = \frac{4 ± \sqrt{28}}{2×3} = \frac{4 ± 2\sqrt{7}}{6} = \frac{2 ± \sqrt{7}}{3}$
$x_1 = \frac{2 + \sqrt{7}}{3}$,$x_2 = \frac{2 - \sqrt{7}}{3}$
(4)解:$(x + 4)^2 = 5(x + 4)$
$(x + 4)^2 - 5(x + 4) = 0$
$(x + 4)(x + 4 - 5) = 0$
$(x + 4)(x - 1) = 0$
$x + 4 = 0$或$x - 1 = 0$
$x_1 = -4$,$x_2 = 1$
(1)解:$x(x-5)+x-5=0$
$(x-5)(x+1)=0$
$x-5=0$或$x+1=0$
$x_1=5$,$x_2=-1$
(2)解:$x^2 - 3x + 1 = 0$
$a=1$,$b=-3$,$c=1$
$\Delta = b^2 - 4ac = (-3)^2 - 4×1×1 = 9 - 4 = 5 > 0$
$x = \frac{3 ± \sqrt{5}}{2×1} = \frac{3 ± \sqrt{5}}{2}$
$x_1 = \frac{3 + \sqrt{5}}{2}$,$x_2 = \frac{3 - \sqrt{5}}{2}$
(3)解:$3x^2 - 1 = 4x$
$3x^2 - 4x - 1 = 0$
$a=3$,$b=-4$,$c=-1$
$\Delta = (-4)^2 - 4×3×(-1) = 16 + 12 = 28 > 0$
$x = \frac{4 ± \sqrt{28}}{2×3} = \frac{4 ± 2\sqrt{7}}{6} = \frac{2 ± \sqrt{7}}{3}$
$x_1 = \frac{2 + \sqrt{7}}{3}$,$x_2 = \frac{2 - \sqrt{7}}{3}$
(4)解:$(x + 4)^2 = 5(x + 4)$
$(x + 4)^2 - 5(x + 4) = 0$
$(x + 4)(x + 4 - 5) = 0$
$(x + 4)(x - 1) = 0$
$x + 4 = 0$或$x - 1 = 0$
$x_1 = -4$,$x_2 = 1$
2. 已知关于x的一元二次方程$x^{2}-2x+k+2= 0$.
(1)若$k= -6$,求此方程的解;
(2)若该方程无实数根,求k的取值范围.
(1)若$k= -6$,求此方程的解;
(2)若该方程无实数根,求k的取值范围.
答案:
(1) $x_{1} = 1 + \sqrt{5}, x_{2} = 1 - \sqrt{5}$;
(2) $k > -1$。
(1) $x_{1} = 1 + \sqrt{5}, x_{2} = 1 - \sqrt{5}$;
(2) $k > -1$。
查看更多完整答案,请扫码查看