第57页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
6. 一个袋子中有红球、白球共 10 个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了 100 次后,发现有 30 次摸到红球,估计这个袋中红球有
3
个。
答案:
3
7. 在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共 40 个。小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:

(1)请估计:当$n$很大时,摸到白球的概率约为
(2)估计盒子里有白球
(3)若向盒子里再放入$x$个除颜色以外其他完全相同的球,这$x$个球中白球只有 1 个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在 50%,请推测$x$的值最有可能是多少。
(1)请估计:当$n$很大时,摸到白球的概率约为
0.6
;(精确到 0.1)(2)估计盒子里有白球
24
个;(3)若向盒子里再放入$x$个除颜色以外其他完全相同的球,这$x$个球中白球只有 1 个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在 50%,请推测$x$的值最有可能是多少。
解:根据(2),得$\frac{24 + 1}{40 + x}=50\%$,解得$x = 10$。∴可以推测出$x$的值最有可能是10。
答案:
解:
(1)0.6
(2)24
(3)根据
(2),得$\frac{24 + 1}{40 + x}=50\%$,解得$x = 10$。
∴可以推测出$x$的值最有可能是10。
(1)0.6
(2)24
(3)根据
(2),得$\frac{24 + 1}{40 + x}=50\%$,解得$x = 10$。
∴可以推测出$x$的值最有可能是10。
8. 为了了解初中生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A. 只愿意就读普通高中;B. 只愿意就读中等职业技术学校;C. 就读普通高中或中等职业技术学校都愿意。学校教务处将调查数据进行了整理,并绘制了如图 3 - 2 - 2 所示的尚不完整的统计图,请根据相关信息,解答下列问题:
(1)本次活动共调查了多少名学生?
(2)补全图①,并求出图②中 B 区域的圆心角的度数;
(3)若该校八、九年级的学生共有 2800 名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数。

(1)本次活动共调查了多少名学生?
(2)补全图①,并求出图②中 B 区域的圆心角的度数;
(3)若该校八、九年级的学生共有 2800 名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数。
答案:
解:
(1)C部分所占的百分比为$\frac{36}{360}× 100\% = 10\%$,故本次活动共调查了$80÷ 10\% = 800$(名)学生。
(2)只愿意就读中等职业技术学校的学生人数为$800 - 480 - 80 = 240$,补全图形如下图所示。图②中B区域的圆心角的度数是$\frac{240}{800}× 360^{\circ}=108^{\circ}$。
(3)估计该校八、九年级学生中只愿意就读中等职业技术学校的人数为$\frac{240}{800}× 2800 = 840$(人)。
解:
(1)C部分所占的百分比为$\frac{36}{360}× 100\% = 10\%$,故本次活动共调查了$80÷ 10\% = 800$(名)学生。
(2)只愿意就读中等职业技术学校的学生人数为$800 - 480 - 80 = 240$,补全图形如下图所示。图②中B区域的圆心角的度数是$\frac{240}{800}× 360^{\circ}=108^{\circ}$。
(3)估计该校八、九年级学生中只愿意就读中等职业技术学校的人数为$\frac{240}{800}× 2800 = 840$(人)。
查看更多完整答案,请扫码查看