第104页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
8. 如图所示的几何体由

4
个面围成,面面相交所形成的线共有6
条.
答案:
4 6
9. 如果一个棱柱有12个顶点,且一条侧棱长为5 cm,那么所有侧棱长之和为
30
cm.
答案:
30
10. 下面的说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤长方体的面不可能是正方形.其中正确的是
①②④
.(填序号)
答案:
①②④
11. 两个完全相同的长方体的长、宽、高分别为5 cm,4 cm,3 cm,把它们叠放在一起组成一个新长方体,在这个新长方体中,体积是
120
$ cm^3,$最大表面积是164
$ cm^2.$
答案:
120 164
12. 分别写出下列各几何体的名称,并按相同特征进行分类.

答案:
①长方体(或四棱柱),②三棱柱,③球,④圆柱,⑤圆锥,⑥三棱锥;⑦六棱柱.
分类方法不唯一,如:若按组成几何体的面是否包含曲面来划分:①②⑥⑦是一类,组成几何体的各面全是平面;③④⑤是一类,组成几何体的面中至少有一个面是曲面.
若按柱、锥、球来划分:①②④⑦是一类,即柱体;⑤⑥是一类,即锥体;③是一类,即球.
分类方法不唯一,如:若按组成几何体的面是否包含曲面来划分:①②⑥⑦是一类,组成几何体的各面全是平面;③④⑤是一类,组成几何体的面中至少有一个面是曲面.
若按柱、锥、球来划分:①②④⑦是一类,即柱体;⑤⑥是一类,即锥体;③是一类,即球.
13. 空间观念 图①是正方体木块,若用不同的方法把它切去一块,可以得到如图②③④⑤所示的不同形状的木块.
(1)我们知道,图①的正方体木块有8个顶点,12条棱,6个面.请你通过观察,将图②③④⑤中木块的顶点数a、棱数b、面数c填入表格;


|图|①|②|③|④|⑤|
| ---- | ---- | ---- | ---- | ---- | ---- |
|顶点数a|8|
|棱数b|12|
|面数c|6|
(2)请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系.(用含a,b,c的一个等式表示)
(1)我们知道,图①的正方体木块有8个顶点,12条棱,6个面.请你通过观察,将图②③④⑤中木块的顶点数a、棱数b、面数c填入表格;
|图|①|②|③|④|⑤|
| ---- | ---- | ---- | ---- | ---- | ---- |
|顶点数a|8|
6
|8
|8
|10
||棱数b|12|
9
|12
|13
|15
||面数c|6|
5
|6
|7
|7
|(2)请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系.(用含a,b,c的一个等式表示)
a+c-b=2
答案:
(1)
图 ① ② ③ ④ ⑤
顶点数a 8 6 8 8 10
棱数b 12 9 12 13 15
面数c 6 5 6 7 7
(2)a+c-b=2.
(1)
图 ① ② ③ ④ ⑤
顶点数a 8 6 8 8 10
棱数b 12 9 12 13 15
面数c 6 5 6 7 7
(2)a+c-b=2.
查看更多完整答案,请扫码查看