第26页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
【典型例题 2】化简:
(1)$\frac {-24}{47}$;(2)$\frac {-28}{-21}$.
(1)$\frac {-24}{47}$;(2)$\frac {-28}{-21}$.
答案:
(1)
$\frac{-24}{47}=(-24)÷47 = - (24÷47)=-\frac{24}{47}$
(2)
$\frac{-28}{-21}=(-28)÷(-21)=28÷21=\frac{28÷7}{21÷7}=\frac{4}{3}$
(1)
$\frac{-24}{47}=(-24)÷47 = - (24÷47)=-\frac{24}{47}$
(2)
$\frac{-28}{-21}=(-28)÷(-21)=28÷21=\frac{28÷7}{21÷7}=\frac{4}{3}$
计算:
(1)$(-20)÷4$;
(2)$(-5)÷(-\frac {1}{2})$;
(3)$3.2÷(-5\frac {1}{3})$;
(4)$0÷(-2025)$.
(1)$(-20)÷4$;
(2)$(-5)÷(-\frac {1}{2})$;
(3)$3.2÷(-5\frac {1}{3})$;
(4)$0÷(-2025)$.
答案:
【解】
(1)$(-20)÷ 4=-(20÷ 4)=-5$;
(2)$(-5)÷ \left(-\dfrac{1}{2}\right)=5× 2=10$;
(3)$3.2÷ \left(-5\dfrac{1}{3}\right)=\dfrac{16}{5}× \left(-\dfrac{3}{16}\right)=-\dfrac{3}{5}$;
(4)$0÷ (-2025)=0$.
(1)$(-20)÷ 4=-(20÷ 4)=-5$;
(2)$(-5)÷ \left(-\dfrac{1}{2}\right)=5× 2=10$;
(3)$3.2÷ \left(-5\dfrac{1}{3}\right)=\dfrac{16}{5}× \left(-\dfrac{3}{16}\right)=-\dfrac{3}{5}$;
(4)$0÷ (-2025)=0$.
1. 与$8÷(-4)$结果相同的是(
A.$8÷(-\frac {1}{4})$
B.$\frac {1}{8}×(-4)$
C.$8×(-\frac {1}{4})$
D.$\frac {1}{8}÷(-4)$
C
)A.$8÷(-\frac {1}{4})$
B.$\frac {1}{8}×(-4)$
C.$8×(-\frac {1}{4})$
D.$\frac {1}{8}÷(-4)$
答案:
C
2. 化简:$\frac {-49}{21}=$
$-\dfrac{7}{3}$
.
答案:
$-\dfrac{7}{3}$
3. 计算:
(1)$(-18)÷0.6$;(2)$-25.6÷(-0.064)$;
(3)$\frac {4}{5}÷(-1)$;(4)$-3\frac {1}{7}÷\frac {11}{12}$.
(1)$(-18)÷0.6$;(2)$-25.6÷(-0.064)$;
(3)$\frac {4}{5}÷(-1)$;(4)$-3\frac {1}{7}÷\frac {11}{12}$.
答案:
【解】
(1)$(-18)÷ 0.6=-(18÷ 0.6)=-30$;
(2)$-25.6÷ (-0.064)=25.6÷ 0.064=400$;
(3)$\dfrac{4}{5}÷ (-1)=-\left(\dfrac{4}{5}÷ 1\right)=-\dfrac{4}{5}$;
(4)$-3\dfrac{1}{7}÷ \dfrac{11}{12}=-\left(\dfrac{22}{7}× \dfrac{12}{11}\right)=-\dfrac{24}{7}$.
(1)$(-18)÷ 0.6=-(18÷ 0.6)=-30$;
(2)$-25.6÷ (-0.064)=25.6÷ 0.064=400$;
(3)$\dfrac{4}{5}÷ (-1)=-\left(\dfrac{4}{5}÷ 1\right)=-\dfrac{4}{5}$;
(4)$-3\dfrac{1}{7}÷ \dfrac{11}{12}=-\left(\dfrac{22}{7}× \dfrac{12}{11}\right)=-\dfrac{24}{7}$.
4. 某同学在计算$-16÷a$时,误将“÷”看成“+”,结果是$-12$,则$-16÷a$的正确结果是(
A.$6$
B.$-6$
C.$4$
D.$-4$
-4
)A.$6$
B.$-6$
C.$4$
D.$-4$
答案:
D【解析】计算$-16÷ a$时,误将“÷”看成“+”,结果得$-12$,即$-16+a=-12$,所以$a=4$.故$-16÷ a=-16÷ 4=-4$.
5. 对于有理数$x$,$y$,若$\frac {x}{y}<0$,则$\frac {|xy|}{xy}+\frac {y}{|y|}+\frac {|x|}{x}$的值是
-1
.
答案:
-1【解析】因为$\dfrac{x}{y}<0$,所以$x$,$y$异号.所以$xy<0$,所以$\dfrac{|xy|}{xy}=\dfrac{-xy}{xy}=-1$.当$x>0$时,$y<0$,则$\dfrac{y}{|y|}=\dfrac{y}{-y}=-1$,$\dfrac{|x|}{x}=\dfrac{x}{x}=1$,所以原式$=-1+(-1)+1=-1$.当$x<0$时,$y>0$,则$\dfrac{y}{|y|}=\dfrac{y}{y}=1$,$\dfrac{|x|}{x}=\dfrac{-x}{x}=-1$,所以原式$=-1+1+(-1)=-1$.综上所述,$\dfrac{|xy|}{xy}+\dfrac{y}{|y|}+\dfrac{|x|}{x}=-1$.
6. 已知$a$,$b$均为有理数,若定义一种新的运算:$a*b= \frac {ab}{1 - ab}$.计算$[(3*2)]*\frac {1}{6}$.
答案:
【解】因为$a*b=\dfrac{ab}{1-ab}$,所以$[(3*2)]*\dfrac{1}{6}=\dfrac{3× 2}{1-3× 2}*\dfrac{1}{6}=\left(-\dfrac{6}{5}\right)*\dfrac{1}{6}=\dfrac{-\dfrac{6}{5}× \dfrac{1}{6}}{1-\left(-\dfrac{6}{5}\right)× \dfrac{1}{6}}=\dfrac{-\dfrac{1}{5}}{1+\dfrac{1}{5}}=-\dfrac{1}{6}$.
查看更多完整答案,请扫码查看