2025年阳光课堂金牌练习册七年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年阳光课堂金牌练习册七年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年阳光课堂金牌练习册七年级数学上册人教版》

【典型例题 1】计算:
(1) $(-\frac{1}{2}) + (-\frac{1}{3})$;
(2) $(-\frac{1}{2}) + \frac{1}{3}$;
(3) $(-\frac{1}{2}) + 0$;
(4) $(-\frac{1}{2}) + \frac{1}{2}$。
思路导引 (1) 是同号两数相加,和为加数的符号,即“$-$”;(2) 是异号两数相加,和的符号由绝对值较大的加数的符号决定;(3) 是一个数与 $0$ 相加,仍得这个数本身;(4) 是互为相反数的两个数相加,结果为 $0$。
【解】(1) $(-\frac{1}{2}) + (-\frac{1}{3}) = -(\frac{1}{2} + \frac{1}{3}) = -\frac{5}{6}$;
(2) $(-\frac{1}{2}) + \frac{1}{3} = -(\frac{1}{2} - \frac{1}{3}) = -\frac{1}{6}$;
(3) $(-\frac{1}{2}) + 0 = -\frac{1}{2}$;
(4) $(-\frac{1}{2}) + \frac{1}{2} = 0$。
规律方法 进行有理数的加法运算时,先确定和的符号,再算和的绝对值。
答案:
(1) $(-\frac{1}{2}) + (-\frac{1}{3}) = -(\frac{1}{2} + \frac{1}{3}) = -\frac{5}{6}$;
(2) $(-\frac{1}{2}) + \frac{1}{3} = -(\frac{1}{2} - \frac{1}{3}) = -\frac{1}{6}$;
(3) $(-\frac{1}{2}) + 0 = -\frac{1}{2}$;
(4) $(-\frac{1}{2}) + \frac{1}{2} = 0$。
1. 计算:
(1) $(-25) + (-35)$;
(2) $(-12) + (+3)$;
(3) $(+8) + (-7)$;
(4) $0 + (-7)$。
答案: 1.【解】
(1)$(-25)+(-35)=-(25+35)=-60$;
(2)$(-12)+(+3)=-(12-3)=-9$;
(3)$(+8)+(-7)=+(8-7)=1$;
(4)$0+(-7)=-7$.
【典型例题 2】计算:
(1) $16 + (-45) + 24 + (-32)$;
(2) $(-2.8) + 3 + 1 + (-3) + 2.8 + (-4)$;
(3) $0.125 + 2\frac{1}{4} + (-2\frac{1}{8}) + (-0.25)$。
思路导引 应用加法的交换律和结合律来解题,具体的结合方法如下:(1) 正数和负数分别先相加,即 $16$ 与 $24$,$(-45)$ 与 $(-32)$ 先相加;(2) 互为相反数的两个数先相加,即 $(-2.8)$ 与 $2.8$,$3$ 与 $(-3)$ 先相加;(3) 同分母的分数先相加,即 $0.125$ 与 $(-2\frac{1}{8})$,$2\frac{1}{4}$ 与 $(-0.25)$ 先相加。
规律方法 在进行有理数的加法运算时,在下列情况下一般可以用加法交换律和结合律:(1) 有相反数的可以先相加;(2) 有些加数相加后可以得到整数时,可以先相加;(3) 分母相同或易于通分的分数,可以先相加;(4) 有许多正数和负数相加时,先将正数和负数分别相加,再把所得的正数和负数相加。
答案:
(1)
$16 + (-45) + 24 + (-32)$
$=(16 + 24)+[(-45)+(-32)]$
$=40+(-77)$
$=-37$
(2)
$(-2.8) + 3 + 1 + (-3) + 2.8 + (-4)$
$=[(-2.8)+2.8]+[3+(-3)]+1+(-4)$
$=0 + 0+1+(-4)$
$=-3$
(3)
$0.125 + 2\frac{1}{4} + (-2\frac{1}{8}) + (-0.25)$
$=[0.125+(-2\frac{1}{8})]+[2\frac{1}{4}+(-0.25)]$
$=(0.125 - 2.125)+(2.25 - 0.25)$
$=-2+2$
$=0$

查看更多完整答案,请扫码查看

关闭