第28页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
1. 有理数的加减混合运算可依据有理数的加法和
减法
法则按顺序进行计算。
答案:
减法
2. 有理数的加减混合运算也可以全部统一成
加法
进行计算,或者写成省略括号及其前面加号的形式进行计算,并利用加法交换律
和结合律
简化运算。
答案:
加法 交换律 结合律
1. 把$(+5)-(+3)-(-1)+(-5)$写成省略括号的形式是(
A.$-5 - 3 + 1 - 5$
B.$5 - 3 - 1 - 5$
C.$5 + 3 + 1 - 5$
D.$5 - 3 + 1 - 5$
D
)。A.$-5 - 3 + 1 - 5$
B.$5 - 3 - 1 - 5$
C.$5 + 3 + 1 - 5$
D.$5 - 3 + 1 - 5$
答案:
D
2. 计算$2 - 3 + (-4)$的结果为(
A.$-5$
B.$-2$
C.$0$
D.$2$
A
)。A.$-5$
B.$-2$
C.$0$
D.$2$
答案:
A
3. $a$,$b$,$c$为三个有理数,则能写成$a - b + c$的是(
A.$a - (+b) + (+c)$
B.$a + (+b) + (-c)$
C.$a + (-b) + (-c)$
D.$a - (-b) - (-c)$
A
)。A.$a - (+b) + (+c)$
B.$a + (+b) + (-c)$
C.$a + (-b) + (-c)$
D.$a - (-b) - (-c)$
答案:
A
4. 大于$-7且小于5$的所有偶数的和为(
A.$0$
B.$-14$
C.$-12$
D.$-6$
D
)。A.$0$
B.$-14$
C.$-12$
D.$-6$
答案:
D
5. $-3的绝对值与6$的相反数的差,再加$-8$得(
A.$0$
B.$1$
C.$-1$
D.以上都不对
B
)。A.$0$
B.$1$
C.$-1$
D.以上都不对
答案:
B
6. 填空:
(1)$-2 - 7 + 4 = ($
(2)$-\dfrac{2}{3} - \dfrac{3}{4} - \dfrac{4}{5} + \dfrac{5}{6} = ($
(1)$-2 - 7 + 4 = ($
-2
$) + ($-7
$) + ($+4
$)$;(2)$-\dfrac{2}{3} - \dfrac{3}{4} - \dfrac{4}{5} + \dfrac{5}{6} = ($
$-\frac{2}{3}$
$) + ($$-\frac{3}{4}$
$) + ($$-\frac{4}{5}$
$) + ($$+\frac{5}{6}$
$)$。
答案:
(1)-2 -7 +4;
(2)$-\frac{2}{3}$ $-\frac{3}{4}$ $-\frac{4}{5}$ $+\frac{5}{6}$
(1)-2 -7 +4;
(2)$-\frac{2}{3}$ $-\frac{3}{4}$ $-\frac{4}{5}$ $+\frac{5}{6}$
7. 计算:
(1)$(-4.75) + 7.4 + 4.75 + 2.6$;
(2)$\left|-1 - \left(-\dfrac{5}{3}\right)\right| - \left|-\dfrac{11}{6} - \dfrac{7}{6}\right|$;
(3)$86 - 5 + 10 - 4 + 6$。
(1)$(-4.75) + 7.4 + 4.75 + 2.6$;
(2)$\left|-1 - \left(-\dfrac{5}{3}\right)\right| - \left|-\dfrac{11}{6} - \dfrac{7}{6}\right|$;
(3)$86 - 5 + 10 - 4 + 6$。
答案:
解:
(1)原式$=(-4.75)+4.75+7.4+2.6=10$。
(2)原式$=\left|-1+\frac{5}{3}\right|-|-3|=\frac{2}{3}-3=-\frac{7}{3}$。
(3)原式$=81+10-4+6=93$。
(1)原式$=(-4.75)+4.75+7.4+2.6=10$。
(2)原式$=\left|-1+\frac{5}{3}\right|-|-3|=\frac{2}{3}-3=-\frac{7}{3}$。
(3)原式$=81+10-4+6=93$。
查看更多完整答案,请扫码查看