1. 看图列式计算。


$60×(1 + \frac{2}{5})$
$=60×\frac{7}{5}$
$= 84$(千米)
$=60×\frac{7}{5}$
$= 84$(千米)
$360×(1 - \frac{2}{5})$
$=360×\frac{3}{5}$
$= 216$(箱)
$=360×\frac{3}{5}$
$= 216$(箱)
答案:
第一幅图
解析:
本题考查了分数乘法的应用。
已知总长度为$60$千米,要求的长度比$60$千米多$\frac{2}{5}$,那么所求长度是$60$千米的$(1 + \frac{2}{5})$倍。
先计算$1+\frac{2}{5}=\frac{7}{5}$,再计算$60×\frac{7}{5}=84$(千米)。
答案:
$60×(1 + \frac{2}{5})$
$=60×\frac{7}{5}$
$= 84$(千米)
第二幅图
解析:
本题考查了分数乘法的应用。
已知昨天的箱数为$360$箱,今天的箱数比昨天少$\frac{2}{5}$,那么今天的箱数是昨天的$(1 - \frac{2}{5})$倍。
先计算$1-\frac{2}{5}=\frac{3}{5}$,再计算$360×\frac{3}{5}=216$(箱)。
答案:
$360×(1 - \frac{2}{5})$
$=360×\frac{3}{5}$
$= 216$(箱)
解析:
本题考查了分数乘法的应用。
已知总长度为$60$千米,要求的长度比$60$千米多$\frac{2}{5}$,那么所求长度是$60$千米的$(1 + \frac{2}{5})$倍。
先计算$1+\frac{2}{5}=\frac{7}{5}$,再计算$60×\frac{7}{5}=84$(千米)。
答案:
$60×(1 + \frac{2}{5})$
$=60×\frac{7}{5}$
$= 84$(千米)
第二幅图
解析:
本题考查了分数乘法的应用。
已知昨天的箱数为$360$箱,今天的箱数比昨天少$\frac{2}{5}$,那么今天的箱数是昨天的$(1 - \frac{2}{5})$倍。
先计算$1-\frac{2}{5}=\frac{3}{5}$,再计算$360×\frac{3}{5}=216$(箱)。
答案:
$360×(1 - \frac{2}{5})$
$=360×\frac{3}{5}$
$= 216$(箱)
2. 服装店搞促销活动,一件大衣现价是原价的$\frac{7}{8}$,现价比原价降低了$\frac{
1
}{8
}$。一条裤子现价比原价低$\frac{3}{20}$,现价是原价的$\frac{17
}{20
}$。
答案:
解析:本题主要考查分数的计算。
对于大衣问题:
已知大衣现价是原价的$\frac{7}{8}$,
所以降低的价格占原价的分率=原价分率-现价占原价分率,
即$1-\frac{7}{8}=\frac{1}{8}$,
对于裤子问题:
已知现价比原价低$\frac{3}{20}$,
所以现价占原价的分率=原价分率-降低的价格占原价的分率,
即$1-\frac{3}{20}=\frac{17}{20}$,
答案:$\frac{1}{8}$;$\frac{17}{20}$。
对于大衣问题:
已知大衣现价是原价的$\frac{7}{8}$,
所以降低的价格占原价的分率=原价分率-现价占原价分率,
即$1-\frac{7}{8}=\frac{1}{8}$,
对于裤子问题:
已知现价比原价低$\frac{3}{20}$,
所以现价占原价的分率=原价分率-降低的价格占原价的分率,
即$1-\frac{3}{20}=\frac{17}{20}$,
答案:$\frac{1}{8}$;$\frac{17}{20}$。
3. 学校体育器材室有足球$x$个,篮球的个数比足球少$\frac{1}{3}$。篮球的个数可以表示为(
$\frac{2}{3}x$
)。
答案:
解析:题目考查的是用代数式表示数量关系。已知足球有$x$个,篮球的个数比足球少$\frac{1}{3}$,即篮球个数是足球个数的$1 - \frac{1}{3}=\frac{2}{3}$,所以篮球个数可表示为$\frac{2}{3}x$。
答案:$\frac{2}{3}x$
答案:$\frac{2}{3}x$
4. 一根钢管长15米,截去全长的$\frac{1}{3}$,则算式$15×(1-\frac{1}{3})$所求的问题是(
A.截去多少米?
B.剩下多少米?
C.截去的比剩下的多多少米?
D.剩下的比截去的多多少米?
B
)。A.截去多少米?
B.剩下多少米?
C.截去的比剩下的多多少米?
D.剩下的比截去的多多少米?
答案:
解析:
题目考查的是分数的运算和问题理解。
首先,理解题目中的“截去全长的$\frac{1}{3}$”,即截去长度为$15 × \frac{1}{3}$。
然后,题目中的算式$15 × (1 - \frac{1}{3})$表示的是从全长中减去截去的部分,即求剩下的长度。
A选项:截去多少米?这应该是求$15 × \frac{1}{3}$的结果,不符合题目中的算式。
B选项:剩下多少米?这正好符合题目中的算式$15 × (1 - \frac{1}{3})$,表示从全长中减去截去的部分后的长度。
C选项:截去的比剩下的多多少米?这需要比较截去和剩下的长度,不符合题目中的算式。
D选项:剩下的比截去的多多少米?这同样需要比较截去和剩下的长度,不符合题目中的算式。
答案:B。
题目考查的是分数的运算和问题理解。
首先,理解题目中的“截去全长的$\frac{1}{3}$”,即截去长度为$15 × \frac{1}{3}$。
然后,题目中的算式$15 × (1 - \frac{1}{3})$表示的是从全长中减去截去的部分,即求剩下的长度。
A选项:截去多少米?这应该是求$15 × \frac{1}{3}$的结果,不符合题目中的算式。
B选项:剩下多少米?这正好符合题目中的算式$15 × (1 - \frac{1}{3})$,表示从全长中减去截去的部分后的长度。
C选项:截去的比剩下的多多少米?这需要比较截去和剩下的长度,不符合题目中的算式。
D选项:剩下的比截去的多多少米?这同样需要比较截去和剩下的长度,不符合题目中的算式。
答案:B。
5. 学校上个月共缴水费960元,这个月比上个月节约$\frac{1}{5}$,这个月缴了多少元?
答案:
960×(1-$\frac{1}{5}$)
=960×$\frac{4}{5}$
=768(元)
答:这个月缴了768元。
=960×$\frac{4}{5}$
=768(元)
答:这个月缴了768元。
6. 根据爸爸和小红的对话算一算,爸爸集邮票多少张?

答案:
99×(1+$\frac{2}{9}$)=99×$\frac{11}{9}$=121(张)
答:爸爸集邮票121张。
答:爸爸集邮票121张。
查看更多完整答案,请扫码查看