(1)计算 275÷39,可把除数看作
计算 568÷21,可把除数看作
40
来试商,商偏小
。计算 568÷21,可把除数看作
20
来试商,商是两
位数。
答案:
解析:
本题考察的是除法的试商方法和商的位数判断。
对于$275 ÷ 39$:
为了简化计算,我们可以将39看作一个接近的整十数,即40。
因为40比39大,所以当我们用40来试商时,得到的商会比实际用39得到的商偏小。
对于 $568÷ 21$:
同样地,我们可以将21看作一个接近的整十数,即20,来进行试商。
为了判断商的位数,我们可以观察被除数的前两位(即56)与除数(即21)的关系。
因为56大于21,所以商至少是两位数。实际上,通过计算我们可以知道,$568 ÷21$的商确实是两位数(商为27,余数为1)。
答案:
计算$275 ÷ 39$,可把除数看作40来试商,商偏小。
计算$568÷ 21$,可把除数看作20来试商,商是两位数。
本题考察的是除法的试商方法和商的位数判断。
对于$275 ÷ 39$:
为了简化计算,我们可以将39看作一个接近的整十数,即40。
因为40比39大,所以当我们用40来试商时,得到的商会比实际用39得到的商偏小。
对于 $568÷ 21$:
同样地,我们可以将21看作一个接近的整十数,即20,来进行试商。
为了判断商的位数,我们可以观察被除数的前两位(即56)与除数(即21)的关系。
因为56大于21,所以商至少是两位数。实际上,通过计算我们可以知道,$568 ÷21$的商确实是两位数(商为27,余数为1)。
答案:
计算$275 ÷ 39$,可把除数看作40来试商,商偏小。
计算$568÷ 21$,可把除数看作20来试商,商是两位数。
(2)已知 68÷4= 17,那么 680÷(
已知 49÷5= 9……4,那么 490÷50= (
40
)= 17,136÷4= (34
)。已知 49÷5= 9……4,那么 490÷50= (
9
)……(40
)。
答案:
解析:
第一个空,根据商的变化规律,被除数扩大10倍,除数也要扩大10倍,商才不变。已知68÷4=17,那么680÷40=17,所以第一个空填40。
第二个空,根据商的变化规律,被除数扩大2倍,除数不变,商也扩大2倍。已知68÷4=17,那么136÷4=34,所以第二个空填34。
第三个空和第四个空,根据商不变的性质,被除数和除数同时扩大相同的倍数,商不变,但余数也扩大相同的倍数。已知49÷5=9……4,那么490÷50=9……40,所以第三个空填9,第四个空填40。
答案:
(2)已知 68÷4= 17,那么 680÷
(40)=17,136÷4=
(34)。
已知 49÷5= 9……4,那么 490÷50=
(9)……
(40)。
第一个空,根据商的变化规律,被除数扩大10倍,除数也要扩大10倍,商才不变。已知68÷4=17,那么680÷40=17,所以第一个空填40。
第二个空,根据商的变化规律,被除数扩大2倍,除数不变,商也扩大2倍。已知68÷4=17,那么136÷4=34,所以第二个空填34。
第三个空和第四个空,根据商不变的性质,被除数和除数同时扩大相同的倍数,商不变,但余数也扩大相同的倍数。已知49÷5=9……4,那么490÷50=9……40,所以第三个空填9,第四个空填40。
答案:
(2)已知 68÷4= 17,那么 680÷
(40)=17,136÷4=
(34)。
已知 49÷5= 9……4,那么 490÷50=
(9)……
(40)。
(3)□38÷24,要使商是两位数,□里最小能填(
487÷□6,要使商是一位数,□里最小能填(
3
)。487÷□6,要使商是一位数,□里最小能填(
5
)。
答案:
解析:
第一个问题:要使□38÷24的商是两位数,需要确定被除数的前两位组成的数(即□3)大于或等于24,从而确定□的最小值。
第二个问题:要使487÷□6的商是一位数,需要确定除数(即□6)大于487的前两位组成的数(即48)的最大可能值,从而确定□的最小值。
答案:
(3)□38÷24,要使商是两位数,□里可以填3~9,所以最小能填3。
487÷□6,要使商是一位数,□里可以填5~9,所以最小能填5。
第一个问题:要使□38÷24的商是两位数,需要确定被除数的前两位组成的数(即□3)大于或等于24,从而确定□的最小值。
第二个问题:要使487÷□6的商是一位数,需要确定除数(即□6)大于487的前两位组成的数(即48)的最大可能值,从而确定□的最小值。
答案:
(3)□38÷24,要使商是两位数,□里可以填3~9,所以最小能填3。
487÷□6,要使商是一位数,□里可以填5~9,所以最小能填5。
| 被除数 | 29 | 290 | 427 | 427 | 480 | 490 |
| 除数 | 9 | 90 | 60 | 30 | 24 | 24 |
| 商 |
| 余数 |
| 除数 | 9 | 90 | 60 | 30 | 24 | 24 |
| 商 |
3
| 3
| 7
| 14
| 20
| 20
|| 余数 |
2
| 20
| 7
| 7
| 0
| 10
|
答案:
解析:本题主要考查了有余数的除法运算。需要分别用被除数除以除数,得到商和余数,填入表格。
答案:
| 被除数 | 29 | 290 | 427 | 427 | 480 | 490 |
| --- | --- | --- | --- | --- | --- | --- |
| 除数 | 9 | 90 | 60 | 30 | 24 | 24 |
| 商 | 3 | 3 | 7 | 14 | 20 | 20 |
| 余数 | 2 | 20 | 7 | 7 | 0 | 10 |
答案:
| 被除数 | 29 | 290 | 427 | 427 | 480 | 490 |
| --- | --- | --- | --- | --- | --- | --- |
| 除数 | 9 | 90 | 60 | 30 | 24 | 24 |
| 商 | 3 | 3 | 7 | 14 | 20 | 20 |
| 余数 | 2 | 20 | 7 | 7 | 0 | 10 |
(5)根据每组的第一题算式,填一填。
100÷25= 4 300÷25= (
1000÷125= 8 8000÷125= (
384÷16= 24 192÷8= (
76÷25= 3……1 760÷250= (
760÷25= (
100÷25= 4 300÷25= (
12
) 600÷(24
)= 251000÷125= 8 8000÷125= (
64
) 5000÷125= (40
)384÷16= 24 192÷8= (
24
) 384÷8= (48
)76÷25= 3……1 760÷250= (
3
)……(10
)760÷25= (
30
)……(10
)
答案:
解析:本题主要考查除法运算的规律,包括商的变化规律以及有余数除法中商和余数的变化规律。
对于$300÷25$,因为$300$是$100$的$3$倍,除数不变,所以商也变为原来的$3$倍,$4×3 = 12$。
对于$600÷( ) = 25$,因为$600$是$100$的$6$倍,商$25$是$4$的$6$倍多一点($25÷4 = 6\cdots\cdots1$),通过计算$600÷25 = 24$,所以除数是$24$。
对于$8000÷125$,$8000$是$1000$的$8$倍,除数不变,商也变为原来的$8$倍,$8×8 = 64$。
对于$5000÷125$,$5000$是$1000$的$5$倍,除数不变,商也变为原来的$5$倍,$8×5 = 40$。
对于$192÷8$,$192$是$384$的一半,$8$是$16$的一半,被除数和除数同时缩小为原来的一半,商不变,还是$24$。
对于$384÷8$,$384$不变,$8$是$16$的一半,除数缩小为原来的一半,商变为原来的$2$倍,$24×2 = 48$。
对于$760÷250$,$760$是$76$的$10$倍,$250$是$25$的$10$倍,被除数和除数同时扩大为原来的$10$倍,商不变,还是$3$,余数也变为原来的$10$倍,$1×10 = 10$。
对于$760÷25$,$760$是$76$的$10$倍,除数不变,商变为原来的$10$倍,$3×10 = 30$,余数也变为原来的$10$倍,$1×10 = 10$。
答案:
$12$;$24$;$64$;$40$;$24$;$48$;$3$,$10$;$30$,$10$
对于$300÷25$,因为$300$是$100$的$3$倍,除数不变,所以商也变为原来的$3$倍,$4×3 = 12$。
对于$600÷( ) = 25$,因为$600$是$100$的$6$倍,商$25$是$4$的$6$倍多一点($25÷4 = 6\cdots\cdots1$),通过计算$600÷25 = 24$,所以除数是$24$。
对于$8000÷125$,$8000$是$1000$的$8$倍,除数不变,商也变为原来的$8$倍,$8×8 = 64$。
对于$5000÷125$,$5000$是$1000$的$5$倍,除数不变,商也变为原来的$5$倍,$8×5 = 40$。
对于$192÷8$,$192$是$384$的一半,$8$是$16$的一半,被除数和除数同时缩小为原来的一半,商不变,还是$24$。
对于$384÷8$,$384$不变,$8$是$16$的一半,除数缩小为原来的一半,商变为原来的$2$倍,$24×2 = 48$。
对于$760÷250$,$760$是$76$的$10$倍,$250$是$25$的$10$倍,被除数和除数同时扩大为原来的$10$倍,商不变,还是$3$,余数也变为原来的$10$倍,$1×10 = 10$。
对于$760÷25$,$760$是$76$的$10$倍,除数不变,商变为原来的$10$倍,$3×10 = 30$,余数也变为原来的$10$倍,$1×10 = 10$。
答案:
$12$;$24$;$64$;$40$;$24$;$48$;$3$,$10$;$30$,$10$
2. 判断。
(1)三位数除以两位数,商一定是一位数。(
(2)计算 408÷81 时,把 81 看作 80 来试商,商偏小。(
(3)除法算式中的被除数不变,除数除以 10,商也除以 10。(
(4)最大的三位数除以最大的两位数,得数是 10。(
(1)三位数除以两位数,商一定是一位数。(
×
)(2)计算 408÷81 时,把 81 看作 80 来试商,商偏小。(
×
)(3)除法算式中的被除数不变,除数除以 10,商也除以 10。(
×
)(4)最大的三位数除以最大的两位数,得数是 10。(
×
)
答案:
解析:
(1) 题目考查的是三位数除以两位数的商的位数。三位数除以两位数,商可能是一位数,也可能是两位数。例如,$100 ÷ 10 = 10$,商是两位数;而$100 ÷ 50 = 2$,商是一位数。因此,不能一概而论说三位数除以两位数,商一定是一位数。
(2) 题目考查的是试商的方法。在计算除法时,为了简化计算,我们通常会选择一个接近除数的数进行试商。当把$81$看作$80$来试商时,由于$80$比$81$小,所以试出来的商会偏大,而不是偏小。
(3) 题目考查的是除法算式中被除数和除数变化对商的影响。在除法算式中,如果被除数不变,而除数除以一个数(这里是$10$),那么商实际上是乘以那个数(这里是$10$),而不是除以那个数。
(4) 题目考查的是最大的三位数和最大的两位数的除法。最大的三位数是$999$,最大的两位数是$99$。$999 ÷ 99$的得数并不是$10$,而是$10$余$9$,或者说是$10.09$(保留两位小数)。
答案:
(1) ×
(2) ×
(3) ×
(4) ×
(1) 题目考查的是三位数除以两位数的商的位数。三位数除以两位数,商可能是一位数,也可能是两位数。例如,$100 ÷ 10 = 10$,商是两位数;而$100 ÷ 50 = 2$,商是一位数。因此,不能一概而论说三位数除以两位数,商一定是一位数。
(2) 题目考查的是试商的方法。在计算除法时,为了简化计算,我们通常会选择一个接近除数的数进行试商。当把$81$看作$80$来试商时,由于$80$比$81$小,所以试出来的商会偏大,而不是偏小。
(3) 题目考查的是除法算式中被除数和除数变化对商的影响。在除法算式中,如果被除数不变,而除数除以一个数(这里是$10$),那么商实际上是乘以那个数(这里是$10$),而不是除以那个数。
(4) 题目考查的是最大的三位数和最大的两位数的除法。最大的三位数是$999$,最大的两位数是$99$。$999 ÷ 99$的得数并不是$10$,而是$10$余$9$,或者说是$10.09$(保留两位小数)。
答案:
(1) ×
(2) ×
(3) ×
(4) ×
查看更多完整答案,请扫码查看