18. 化简:
(1)$(8a^{2}b - 5ab^{2}) - 2(3a^{2}b - 4ab^{2})$;
(2)$3x^{2} - [5x - (\frac{1}{2}x - 3) + 2x^{2}]$.
(1)$(8a^{2}b - 5ab^{2}) - 2(3a^{2}b - 4ab^{2})$;
(2)$3x^{2} - [5x - (\frac{1}{2}x - 3) + 2x^{2}]$.
答案:
解
(1)$(8a^{2}b-5ab^{2})-2(3a^{2}b-4ab^{2})$$=8a^{2}b-5ab^{2}-6a^{2}b+8ab^{2}$$=(8a^{2}b-6a^{2}b)+(-5ab^{2}+8ab^{2})$$=(8-6)a^{2}b+(-5+8)ab^{2}$$=2a^{2}b+3ab^{2}$.
(2)$3x^{2}-[5x-(\frac{1}{2}x-3)+2x^{2}]$$=3x^{2}-5x+(\frac{1}{2}x-3)-2x^{2}$$=3x^{2}-5x+\frac{1}{2}x-3-2x^{2}$$=(3x^{2}-2x^{2})+(-5x+\frac{1}{2}x)-3$$=(3-2)x^{2}+(-5+\frac{1}{2})x-3$$=x^{2}-\frac{9}{2}x-3$.
(1)$(8a^{2}b-5ab^{2})-2(3a^{2}b-4ab^{2})$$=8a^{2}b-5ab^{2}-6a^{2}b+8ab^{2}$$=(8a^{2}b-6a^{2}b)+(-5ab^{2}+8ab^{2})$$=(8-6)a^{2}b+(-5+8)ab^{2}$$=2a^{2}b+3ab^{2}$.
(2)$3x^{2}-[5x-(\frac{1}{2}x-3)+2x^{2}]$$=3x^{2}-5x+(\frac{1}{2}x-3)-2x^{2}$$=3x^{2}-5x+\frac{1}{2}x-3-2x^{2}$$=(3x^{2}-2x^{2})+(-5x+\frac{1}{2}x)-3$$=(3-2)x^{2}+(-5+\frac{1}{2})x-3$$=x^{2}-\frac{9}{2}x-3$.
19. 阅读下面材料,并完成相应学习任务.
林林同学在计算$2(ab^{2} + 3a^{2}b) - 3(ab^{2} + a^{2}b) - a^{2}b$时,写出如下计算步骤:
$\begin{aligned}&2(ab^{2} + 3a^{2}b) - 3(ab^{2} + a^{2}b) - a^{2}b\\=&2ab^{2} + 6a^{2}b - 3ab^{2} + 3a^{2}b - a^{2}b & 第一步\\=&2ab^{2} - 3ab^{2} + 6a^{2}b + 3a^{2}b - a^{2}b & 第二步\\=&(2ab^{2} - 3ab^{2}) + (6a^{2}b + 3a^{2}b - a^{2}b) & 第三步\\=& - ab^{2} + 8a^{2}b & 第四步\end{aligned} $
(1)以上步骤第______步开始出现了错误,错误的原因是______.
(2)请写出正确的化简过程并求值,其中$a = -\frac{1}{2}$,$b = 2$.
林林同学在计算$2(ab^{2} + 3a^{2}b) - 3(ab^{2} + a^{2}b) - a^{2}b$时,写出如下计算步骤:
$\begin{aligned}&2(ab^{2} + 3a^{2}b) - 3(ab^{2} + a^{2}b) - a^{2}b\\=&2ab^{2} + 6a^{2}b - 3ab^{2} + 3a^{2}b - a^{2}b & 第一步\\=&2ab^{2} - 3ab^{2} + 6a^{2}b + 3a^{2}b - a^{2}b & 第二步\\=&(2ab^{2} - 3ab^{2}) + (6a^{2}b + 3a^{2}b - a^{2}b) & 第三步\\=& - ab^{2} + 8a^{2}b & 第四步\end{aligned} $
(1)以上步骤第______步开始出现了错误,错误的原因是______.
(2)请写出正确的化简过程并求值,其中$a = -\frac{1}{2}$,$b = 2$.
答案:
解
(1)一 $(ab^{2}+a^{2}b)$括号前是负数,去括号后括号内$a^{2}b$项没有改变符号
(2)原式$=2ab^{2}+6a^{2}b-3ab^{2}-3a^{2}b-a^{2}b$$=(2ab^{2}-3ab^{2})+(6a^{2}b-3a^{2}b-a^{2}b)$$=(2-3)ab^{2}+(6-3-1)a^{2}b$$=-ab^{2}+2a^{2}b$.
当$a=-\frac{1}{2},b=2$时,
原式$=-(-\frac{1}{2})×2^{2}+2×(-\frac{1}{2})^{2}×2$$=-(-\frac{1}{2})×4+2×\frac{1}{4}×2$$=-(-2)+\frac{1}{2}×2$$=2+1$$=3$.
(1)一 $(ab^{2}+a^{2}b)$括号前是负数,去括号后括号内$a^{2}b$项没有改变符号
(2)原式$=2ab^{2}+6a^{2}b-3ab^{2}-3a^{2}b-a^{2}b$$=(2ab^{2}-3ab^{2})+(6a^{2}b-3a^{2}b-a^{2}b)$$=(2-3)ab^{2}+(6-3-1)a^{2}b$$=-ab^{2}+2a^{2}b$.
当$a=-\frac{1}{2},b=2$时,
原式$=-(-\frac{1}{2})×2^{2}+2×(-\frac{1}{2})^{2}×2$$=-(-\frac{1}{2})×4+2×\frac{1}{4}×2$$=-(-2)+\frac{1}{2}×2$$=2+1$$=3$.
查看更多完整答案,请扫码查看