10. 已知关于$x$,$y的两个多项式A = x^{3} - axy + 3x^{2}y^{3} + 1$,$B = 2x^{3} - xy + bx^{2}y^{3}$.小希在计算时把题目条件$A + B错看成了A - B$,求得的结果为$-x^{3} + 2xy + 1$,那么小希最终计算的$A + B$中不含的项为( )
A.五次项
B.三次项
C.二次项
D.常数项
A.五次项
B.三次项
C.二次项
D.常数项
答案:
C
11. 已知整式$A与3a^{5}$是同类项,请写出一个满足已知条件的整式$A$:______.
答案:
$4a^{5}$(答案不唯一)
12. 化简:$8x - (3x - 5) = $______.
答案:
$5x+5$
13. 某工厂第一车间有$x$人,第二车间比第一车间人数的一半多$10$人,如果从第二车间调出$8$人到第一车间,则调动后,第一车间的人数比第二车间多______人.
答案:
$(\frac{x}{2}+6)$
14. 已知关于$x$,$y的多项式x^{2} + mx - 2y + n与nx^{2} - 3x + 4y - 7的差的值与字母x$的取值无关,则$n - m = $______.
答案:
4
15. 若$\vert a\vert$表示有理数,则一定是非负数,也就是说它的值为正数或$0$,所以$\vert a\vert的最小值为0$.当$\vert 3(x + y) - 12\vert$有最小值时,$(6x - 7y) - (7x - 6y)$的值为______.
答案:
-4
16. 已知$(a + 10)x^{3} + cx^{2} - 2x + 5是关于x$的二次多项式,且有理数$a$,$b$,$c满足(c - 18)^{2} = -\vert a + b\vert$,则$a - b + c = $______.
答案:
-2
17. 合并下列各式的同类项:
(1)$a + 2b + 3a - 2b$;
(2)$3x^{2} + 6x + 5 - 4x^{2} + 7x - 6$;
(3)$x^{2}y - 3xy^{2} + 2yx^{2} - y^{2}x$;
(4)$3(x + y)^{2} - (x - y) + 2(x + y)^{2} + (x - y) - 5(x + y)^{2}$.(提示:把$(x - y)和(x + y)$各看成一个整体)
(1)$a + 2b + 3a - 2b$;
(2)$3x^{2} + 6x + 5 - 4x^{2} + 7x - 6$;
(3)$x^{2}y - 3xy^{2} + 2yx^{2} - y^{2}x$;
(4)$3(x + y)^{2} - (x - y) + 2(x + y)^{2} + (x - y) - 5(x + y)^{2}$.(提示:把$(x - y)和(x + y)$各看成一个整体)
答案:
解
(1)$a+2b+3a-2b=(a+3a)+(2b-2b)=(1+3)a+(2-2)b=4a$.
(2)$3x^{2}+6x+5-4x^{2}+7x-6=(3x^{2}-4x^{2})+(6x+7x)+(5-6)=(3-4)x^{2}+(6+7)x+(-1)=-x^{2}+13x-1$.
(3)$x^{2}y-3xy^{2}+2yx^{2}-y^{2}x=(x^{2}y+2yx^{2})+(-3xy^{2}-y^{2}x)=(1+2)x^{2}y+(-3-1)xy^{2}=3x^{2}y-4xy^{2}$.
(4)$3(x+y)^{2}-(x-y)+2(x+y)^{2}+(x-y)-5(x+y)^{2}=[3(x+y)^{2}+2(x+y)^{2}-5(x+y)^{2}]+[(x-y)-(x-y)]=(3+2-5)(x+y)^{2}+0=0$.
(1)$a+2b+3a-2b=(a+3a)+(2b-2b)=(1+3)a+(2-2)b=4a$.
(2)$3x^{2}+6x+5-4x^{2}+7x-6=(3x^{2}-4x^{2})+(6x+7x)+(5-6)=(3-4)x^{2}+(6+7)x+(-1)=-x^{2}+13x-1$.
(3)$x^{2}y-3xy^{2}+2yx^{2}-y^{2}x=(x^{2}y+2yx^{2})+(-3xy^{2}-y^{2}x)=(1+2)x^{2}y+(-3-1)xy^{2}=3x^{2}y-4xy^{2}$.
(4)$3(x+y)^{2}-(x-y)+2(x+y)^{2}+(x-y)-5(x+y)^{2}=[3(x+y)^{2}+2(x+y)^{2}-5(x+y)^{2}]+[(x-y)-(x-y)]=(3+2-5)(x+y)^{2}+0=0$.
查看更多完整答案,请扫码查看