2025年假日时光暑假作业阳光出版社八年级数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假日时光暑假作业阳光出版社八年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
15. 先化简,再求值:$\frac{x-2}{x-1}÷(x+1-\frac{3}{x-1})$,其中$x= \sqrt{3}-2$.
答案:
原式 $ = \frac{x - 2}{x - 1} ÷ \frac{x^2 - 1 - 3}{x - 1} = \frac{x - 2}{x - 1} \cdot \frac{x - 1}{(x + 2)(x - 2)} = \frac{1}{x + 2} $
当 $ x = \sqrt{3} - 2 $ 时,原式 $ = \frac{1}{\sqrt{3} - 2 + 2} = \frac{\sqrt{3}}{3} $
当 $ x = \sqrt{3} - 2 $ 时,原式 $ = \frac{1}{\sqrt{3} - 2 + 2} = \frac{\sqrt{3}}{3} $
16. 先化简,再求值:$(x+2)^{2}+(2x+1)(2x-1)-4x(x+1)$,其中$x= -\sqrt{2}$.
答案:
原式 $ = x^2 + 4x + 4 + 4x^2 - 1 - 4x^2 - 4x = x^2 + 3 $
当 $ x = -\sqrt{2} $ 时,原式 $ = (-\sqrt{2})^2 + 3 = 5 $
当 $ x = -\sqrt{2} $ 时,原式 $ = (-\sqrt{2})^2 + 3 = 5 $
17. 有这样一类题目:将$\sqrt{a\pm2\sqrt{b}}$化简,如果你能找到两个数$m,n$,使$m^{2}+n^{2}= a且mn= \sqrt{b}$,则将$a\pm2\sqrt{b}变成m^{2}+n^{2}\pm2mn$,即变成$(m\pm n)^{2}$,从而使得$\sqrt{a\pm2\sqrt{b}}$方便化简.例如:
$5+2\sqrt{6}= 3+2+2\sqrt{6}= (\sqrt{3})^{2}+(\sqrt{2})^{2}+2×\sqrt{2}×\sqrt{3}= (\sqrt{3}+\sqrt{2})^{2}$,
$\therefore\sqrt{5+2\sqrt{6}}= \sqrt{(\sqrt{3}+\sqrt{2})^{2}}= \sqrt{3}+\sqrt{2}$.
请依照上例解下列问题:
(1)$\sqrt{5-2\sqrt{6}}$=
$5+2\sqrt{6}= 3+2+2\sqrt{6}= (\sqrt{3})^{2}+(\sqrt{2})^{2}+2×\sqrt{2}×\sqrt{3}= (\sqrt{3}+\sqrt{2})^{2}$,
$\therefore\sqrt{5+2\sqrt{6}}= \sqrt{(\sqrt{3}+\sqrt{2})^{2}}= \sqrt{3}+\sqrt{2}$.
请依照上例解下列问题:
(1)$\sqrt{5-2\sqrt{6}}$=
$\sqrt{3}-\sqrt{2}$
;(2)$\sqrt{4+2\sqrt{3}}$=$\sqrt{3}+1$
.
答案:
(1) $ 5 - 2\sqrt{6} = 3 + 2 - 2\sqrt{6} = (\sqrt{3})^2 + (\sqrt{2})^2 - 2 × \sqrt{2} × \sqrt{3} = (\sqrt{3} - \sqrt{2})^2 $,$ \therefore \sqrt{5 - 2\sqrt{6}} = \sqrt{(\sqrt{3} - \sqrt{2})^2} = \sqrt{3} - \sqrt{2} $
(2) $ 4 + 2\sqrt{3} = 3 + 1 + 2\sqrt{3} = (\sqrt{3})^2 + 1^2 + 2 × \sqrt{3} × 1 = (\sqrt{3} + 1)^2 $,$ \therefore \sqrt{4 + 2\sqrt{3}} = \sqrt{(\sqrt{3} + 1)^2} = \sqrt{3} + 1 $
(1) $ 5 - 2\sqrt{6} = 3 + 2 - 2\sqrt{6} = (\sqrt{3})^2 + (\sqrt{2})^2 - 2 × \sqrt{2} × \sqrt{3} = (\sqrt{3} - \sqrt{2})^2 $,$ \therefore \sqrt{5 - 2\sqrt{6}} = \sqrt{(\sqrt{3} - \sqrt{2})^2} = \sqrt{3} - \sqrt{2} $
(2) $ 4 + 2\sqrt{3} = 3 + 1 + 2\sqrt{3} = (\sqrt{3})^2 + 1^2 + 2 × \sqrt{3} × 1 = (\sqrt{3} + 1)^2 $,$ \therefore \sqrt{4 + 2\sqrt{3}} = \sqrt{(\sqrt{3} + 1)^2} = \sqrt{3} + 1 $
18. (1)已知$\sqrt{39+x^{2}}-\sqrt{15+x^{2}}= 2$,求$\sqrt{39+x^{2}}+\sqrt{15+x^{2}}$的值.
(2)已知$\sqrt{29-x^{2}}-\sqrt{15+x^{2}}= 2$,求$\sqrt{29-x^{2}}+\sqrt{15+x^{2}}$的值.
12
(2)已知$\sqrt{29-x^{2}}-\sqrt{15+x^{2}}= 2$,求$\sqrt{29-x^{2}}+\sqrt{15+x^{2}}$的值.
$2\sqrt{21}$
答案:
(1)设$a = \sqrt{39 + x^{2}}$,$b=\sqrt{15 + x^{2}}$,则$a - b=2$,$a^{2}-b^{2}=(39 + x^{2})-(15 + x^{2})=24$。
因为$a^{2}-b^{2}=(a - b)(a + b)$,所以$24=2(a + b)$,解得$a + b=12$,即$\sqrt{39 + x^{2}}+\sqrt{15 + x^{2}}=12$。
(2)设$m=\sqrt{29 - x^{2}}$,$n = \sqrt{15 + x^{2}}$,则$m - n=2$,$m^{2}+n^{2}=(29 - x^{2})+(15 + x^{2})=44$。
$(m - n)^{2}=m^{2}-2mn + n^{2}=4$,即$44-2mn=4$,解得$mn = 20$。
$(m + n)^{2}=m^{2}+2mn + n^{2}=44 + 40=84$,所以$m + n=\sqrt{84}=2\sqrt{21}$,即$\sqrt{29 - x^{2}}+\sqrt{15 + x^{2}}=2\sqrt{21}$。
答案:
(1) $12$;
(2) $2\sqrt{21}$
(1)设$a = \sqrt{39 + x^{2}}$,$b=\sqrt{15 + x^{2}}$,则$a - b=2$,$a^{2}-b^{2}=(39 + x^{2})-(15 + x^{2})=24$。
因为$a^{2}-b^{2}=(a - b)(a + b)$,所以$24=2(a + b)$,解得$a + b=12$,即$\sqrt{39 + x^{2}}+\sqrt{15 + x^{2}}=12$。
(2)设$m=\sqrt{29 - x^{2}}$,$n = \sqrt{15 + x^{2}}$,则$m - n=2$,$m^{2}+n^{2}=(29 - x^{2})+(15 + x^{2})=44$。
$(m - n)^{2}=m^{2}-2mn + n^{2}=4$,即$44-2mn=4$,解得$mn = 20$。
$(m + n)^{2}=m^{2}+2mn + n^{2}=44 + 40=84$,所以$m + n=\sqrt{84}=2\sqrt{21}$,即$\sqrt{29 - x^{2}}+\sqrt{15 + x^{2}}=2\sqrt{21}$。
答案:
(1) $12$;
(2) $2\sqrt{21}$
查看更多完整答案,请扫码查看