2025年初中同步练习册九年级数学上册鲁教版54制山东科学技术出版社


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年初中同步练习册九年级数学上册鲁教版54制山东科学技术出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年初中同步练习册九年级数学上册鲁教版54制山东科学技术出版社》

2. 若抛物线 $ y = (x - m)^2 + (m + 1) $ 的顶点在第二象限,则 $ m $ 的取值范围为(
D
)
A.$ m > 1 $
B.$ m > 0 $
C.$ m > -1 $
D.$ -1 < m < 0 $
答案: D
3. 已知二次函数 $ y = a(x - 1)^2 - c $ 的图象如图所示,则一次函数 $ y = ax + c $ 的图象可能是(
A
)
答案: A
4. 二次函数 $ y = -(x - 3)^2 - 2 $ 的图象的顶点坐标为
$(3,-2)$
,对称轴是
$x=3$
答案: $(3,-2)$ $x=3$
5. 把 $ y = -x^2 - 4x + 1 $ 化成 $ y = a(x + m)^2 + n $ 的形式是
$y=-(x+2)^2+5$
答案: $y=-(x+2)^2+5$
6. 已知函数 $ y = -\frac{1}{2}(x - 4)^2 - 1 $。
(1) 写出该函数图象的开口方向、对称轴、顶点坐标。
(2) 当 $ x $ 取何值时,$ y $ 随 $ x $ 的增大而减小?
(3) 怎样移动抛物线 $ y = -\frac{1}{2}x^2 $ 就可以得到抛物线 $ y = -\frac{1}{2}(x - 4)^2 - 1 $?
答案: 解:
(1)
∵函数$y=-\frac{1}{2}(x-4)^2-1$,
∴该函数图象的开口向下,对称轴是直线$x=4$,顶点坐标是$(4,-1)$.
(2)
∵函数$y=-\frac{1}{2}(x-4)^2-1$,
∴当$x>4$时,y随x的增大而减小.
(3)将抛物线$y=-\frac{1}{2}x^2$先向右平移4个单位,再向下平移1个单位,就可以得到抛物线$y=-\frac{1}{2}(x-4)^2-1$.
7. 把抛物线 $ y = -\frac{1}{3}(x - 1)^2 + 1 $ 先向左平移3个单位,再向上平移2个单位,得到抛物线 $ C $。
(1) 求抛物线 $ C $ 的函数表达式;
(2) 写出抛物线 $ C $ 的性质。
答案: 解:
(1)由题意得抛物线C的函数表达式为$y=-\frac{1}{3}(x-1+3)^2+1+2=-\frac{1}{3}(x+2)^2+3$.
(2)抛物线C的性质:①开口向下;②顶点坐标为$(-2,3)$;③当$x=-2$时,相应函数有最大值3;④对称轴是$x=-2$;⑤与y轴的交点坐标为$(0,\frac{5}{3})$,与x轴的交点坐标为$(1,0)$和$(-5,0)$;⑥当$x<-2$时,y随x的增大而增大,当$x>-2$时,y随x的增大而减小.
8. 画出函数 $ y = \frac{1}{2}(x - 6)^2 + 3 $ 的图象,写出它的开口方向、对称轴和顶点坐标,并说明当 $ y $ 随 $ x $ 的增大而增大时,$ x $ 的取值范围。
答案:
解:函数$y=\frac{1}{2}(x-6)^2+3$的图象如图所示.
3
该函数图象的开口向上,对称轴为直线$x=6$,顶点坐标为$(6,3)$.
当$x>6$时,y随x的增大而增大.

查看更多完整答案,请扫码查看

关闭