1. 若四个不同的整数$m$,$n$,$p$,$q$满足$m\cdot n\cdot p\cdot q = 4$,则$m + n + p + q$的值为 (
A.0
B.2
C.6
D.8
A
)A.0
B.2
C.6
D.8
答案:
A
2. 设有理数$a$,$b$,$c满足a + b + c = 0$,$abc>0$,则$a$,$b$,$c$中正数的个数为
1
。
答案:
1 点拨:因为 $abc>0$,所以 $a,b,c$ 中负数的个数为偶数.
因为 $a+b+c=0$,
所以 $a,b,c$ 中负数有 2 个,即正数的个数为 1.
因为 $a+b+c=0$,
所以 $a,b,c$ 中负数有 2 个,即正数的个数为 1.
3. 计算:
(1)$\left[1\frac{1}{24}-\left(\frac{3}{8}+\frac{1}{6}-\frac{3}{4}\right)×24\right]×\left(-\frac{1}{5}\right)$;
(2)$-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-3×\left(-\frac{22}{5}\right)$。
(1)$\left[1\frac{1}{24}-\left(\frac{3}{8}+\frac{1}{6}-\frac{3}{4}\right)×24\right]×\left(-\frac{1}{5}\right)$;
(2)$-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-3×\left(-\frac{22}{5}\right)$。
答案:
解:
(1)原式$=\left[1\frac{1}{24}-\left(\frac{3}{8}×24+\frac{1}{6}×24-\frac{3}{4}×24\right)\right]×\left(-\frac{1}{5}\right)=\left[\frac{25}{24}-(9+4-18)\right]×\left(-\frac{1}{5}\right)=\left(\frac{25}{24}+5\right)×\left(-\frac{1}{5}\right)=\frac{25}{24}×\left(-\frac{1}{5}\right)+5×\left(-\frac{1}{5}\right)=-\frac{5}{24}-1=-\frac{29}{24}$.
(2)原式$=-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-3×2×\left(-\frac{11}{5}\right)=-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-6×\left(-\frac{11}{5}\right)=(-5+11-6)×\left(-\frac{11}{5}\right)=0$.
(1)原式$=\left[1\frac{1}{24}-\left(\frac{3}{8}×24+\frac{1}{6}×24-\frac{3}{4}×24\right)\right]×\left(-\frac{1}{5}\right)=\left[\frac{25}{24}-(9+4-18)\right]×\left(-\frac{1}{5}\right)=\left(\frac{25}{24}+5\right)×\left(-\frac{1}{5}\right)=\frac{25}{24}×\left(-\frac{1}{5}\right)+5×\left(-\frac{1}{5}\right)=-\frac{5}{24}-1=-\frac{29}{24}$.
(2)原式$=-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-3×2×\left(-\frac{11}{5}\right)=-5×\left(-\frac{11}{5}\right)+11×\left(-\frac{11}{5}\right)-6×\left(-\frac{11}{5}\right)=(-5+11-6)×\left(-\frac{11}{5}\right)=0$.
查看更多完整答案,请扫码查看