第22页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
1[2025湖北武汉质检,中]七个有理数的积为负数,其中负因数的个数一定不可能是(
A.1
B.3
C.6
D.7
C
)A.1
B.3
C.6
D.7
答案:
C 【解析】因为七个有理数的积为负数,所以负因数的个数为奇数,故选C.
如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第3个台阶上依次标着$-2,-1,-\frac {1}{2}$,且任意相邻三个台阶上数的积都相等.对下列结论判断正确的是(
结论Ⅰ:从下到上前2022个台阶上的数的积是-1;
结论Ⅱ:数$-\frac {1}{2}$所在的台阶数用正整数k表示为3k.
A.Ⅰ对、Ⅱ错
B.Ⅰ错、Ⅱ对
C.Ⅰ和Ⅱ都对
D.Ⅰ和Ⅱ都错
B
)结论Ⅰ:从下到上前2022个台阶上的数的积是-1;
结论Ⅱ:数$-\frac {1}{2}$所在的台阶数用正整数k表示为3k.
A.Ⅰ对、Ⅱ错
B.Ⅰ错、Ⅱ对
C.Ⅰ和Ⅱ都对
D.Ⅰ和Ⅱ都错
答案:
B 【解析】因为任意相邻三个台阶上数的积都相等,且$-2×(-1)×(-\frac {1}{2})=-1,2022=674×3,$所以从下到上前2022个台阶上的数的积是1,故结论Ⅰ错误;由题意得,数$-\frac {1}{2}$在第3个台阶上,第6个台阶上,第9个台阶上,…,所以数$-\frac {1}{2}$所在的台阶数用正整数k表示为3k,故结论Ⅱ正确.故选B.
3[2024湖北荆州期末,中]如果4个不等的偶数m,n,p,q满足$(3-m)(3-n)(3-p)(3-q)= 9$,那么$m+n+p+q$等于
12
.
答案:
12 【解析】因为m,n,p,q是4个不等的偶数,所以(3-m),(3-n),(3-p),(3-q)均为不等的奇数.因为9=3×1×(-1)×(-3),所以可令3-m=3,3-n=1,3-p=-1,3-q=-3,解得m=0,n=2,p=4,q=6,所以m+n+p+q=0+2+4+6=12.故答案为12.
(1)它的计算过程可以解释
(2)请你利用这种运算律计算:$118\frac {4}{5}×999+(-\frac {1}{5})×999-18\frac {3}{5}×999.$
分配律
这一运算律;(2)请你利用这种运算律计算:$118\frac {4}{5}×999+(-\frac {1}{5})×999-18\frac {3}{5}×999.$
$118\frac {4}{5}×999+(-\frac {1}{5})×999-18\frac {3}{5}×999=(118\frac {4}{5}-\frac {1}{5}-18\frac {3}{5})×999=(118\frac {3}{5}-18\frac {3}{5})×999=100×999=99900$
答案:
(1)它的计算过程可以解释分配律这一运算律,故答案为分配律$.(2)118\frac {4}{5}×999+(-\frac {1}{5})×999-18\frac {3}{5}×999=(118\frac {4}{5}-\frac {1}{5}-18\frac {3}{5})×999=(118\frac {3}{5}-18\frac {3}{5})×999=100×999=99900.$
(1)它的计算过程可以解释分配律这一运算律,故答案为分配律$.(2)118\frac {4}{5}×999+(-\frac {1}{5})×999-18\frac {3}{5}×999=(118\frac {4}{5}-\frac {1}{5}-18\frac {3}{5})×999=(118\frac {3}{5}-18\frac {3}{5})×999=100×999=99900.$
5思想方法整体思想[较难]计算:$(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5})-(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}).$
小明同学的解法如下:
解:设$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4})$为A,$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5})$为B,则原式$=B(1+A)-A(1+B)= B+AB-A-AB= B-A= \frac {1}{5}$.请用上面方法计算:
(1)$(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})-(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6});$
(2)$(1+\frac {1}{2}+\frac {1}{3}+... +\frac {1}{n})(\frac {1}{2}+\frac {1}{3}+... +\frac {1}{n+1})-(1+\frac {1}{2}+\frac {1}{3}... +\frac {1}{n+1})(\frac {1}{2}+\frac {1}{3}... +\frac {1}{n}).$
小明同学的解法如下:
解:设$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4})$为A,$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5})$为B,则原式$=B(1+A)-A(1+B)= B+AB-A-AB= B-A= \frac {1}{5}$.请用上面方法计算:
(1)$(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})-(1+\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})×(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6});$
(2)$(1+\frac {1}{2}+\frac {1}{3}+... +\frac {1}{n})(\frac {1}{2}+\frac {1}{3}+... +\frac {1}{n+1})-(1+\frac {1}{2}+\frac {1}{3}... +\frac {1}{n+1})(\frac {1}{2}+\frac {1}{3}... +\frac {1}{n}).$
答案:
(1)设$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})$为$A,(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})$为B.原式$=(1+A)B-(1+B)A=B+AB-A-AB=B-A=\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7}-(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})=\frac {1}{7}.(2)$设$(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n})$为$A,(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n+1})$为B.原式$=(1+A)B-(1+B)A=B+AB-A-AB=B-A=(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n+1})-(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n})=\frac {1}{n+1}.$
(1)设$(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})$为$A,(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7})$为B.原式$=(1+A)B-(1+B)A=B+AB-A-AB=B-A=\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6}+\frac {1}{7}-(\frac {1}{2}+\frac {1}{3}+\frac {1}{4}+\frac {1}{5}+\frac {1}{6})=\frac {1}{7}.(2)$设$(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n})$为$A,(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n+1})$为B.原式$=(1+A)B-(1+B)A=B+AB-A-AB=B-A=(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n+1})-(\frac {1}{2}+\frac {1}{3}+\cdots +\frac {1}{n})=\frac {1}{n+1}.$
查看更多完整答案,请扫码查看