证明:连接
∵ $S_{五边形ACBED}= $
又∵ $S_{五边形ACBED}= $
∴
∴ $a^{2}+b^{2}= c^{2}$.
DB,过点 B 作 DE 边上的高 BF,BF = b - a
.∵ $S_{五边形ACBED}= $
$S_{梯形ACBE} + S_{△AED} = \frac{1}{2}(a + b)b + \frac{1}{2}ab$
,又∵ $S_{五边形ACBED}= $
$S_{△ACB} + S_{△ADB} + S_{△BED} = \frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}a(b - a)$
,∴
$\frac{1}{2}(a + b)b + \frac{1}{2}ab = \frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}a(b - a)$
,∴ $a^{2}+b^{2}= c^{2}$.
答案:
DB,过点 B 作 DE 边上的高 BF,BF = b - a $S_{梯形ACBE} + S_{△AED} = \frac{1}{2}(a + b)b + \frac{1}{2}ab$ $S_{△ACB} + S_{△ADB} + S_{△BED} = \frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}a(b - a)$ $\frac{1}{2}(a + b)b + \frac{1}{2}ab = \frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}a(b - a)$
查看更多完整答案,请扫码查看