2025年暑假Happy假日八年级数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假Happy假日八年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假Happy假日八年级数学人教版》

21. 已知一次函数$y=kx+b$的图象经过点$(3,5)$与$(-4,-9)$,与$x$轴,$y$轴分别交于点$A$,$B$.
(1)求这个一次函数的解析式;
(2)若坐标原点为$O$,求$\triangle ABO$的面积.
答案: 【解析】:
(1) 因为一次函数$y = kx + b$的图象经过点$(3,5)$与$( - 4, - 9)$,将这两点代入函数可得方程组$\begin{cases}3k + b = 5 \\-4k + b = - 9 \\\end{cases}$。
用第一个方程$3k + b = 5$减去第二个方程$-4k + b = - 9$,可得:
$(3k + b)-(-4k + b)=5-(-9)$
$3k + b + 4k - b = 5 + 9$
$7k = 14$,解得$k = 2$。
把$k = 2$代入$3k + b = 5$,得$3\times2 + b = 5$,即$6 + b = 5$,解得$b = - 1$。
所以这个一次函数的解析式为$y = 2x - 1$。
(2) 要求$\triangle ABO$的面积,需要先求出$A$、$B$两点的坐标。
对于$y = 2x - 1$,当$y = 0$时,$2x - 1 = 0$,$2x = 1$,解得$x=\frac{1}{2}$,所以$A(\frac{1}{2},0)$,则$OA=\frac{1}{2}$。
当$x = 0$时,$y = 2\times0 - 1=-1$,所以$B(0,-1)$,则$OB = 1$。
根据三角形面积公式$S=\frac{1}{2}\times底\times高$,在$\triangle ABO$中,以$OA$为底,$OB$为高,可得$S_{\triangle ABO}=\frac{1}{2}\times OA\times OB=\frac{1}{2}\times\frac{1}{2}\times1=\frac{1}{4}$。
【答案】:
(1)$y = 2x - 1$;
(2)$\frac{1}{4}$

查看更多完整答案,请扫码查看

关闭