第82页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
22. “珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的书店,买到书后继续去学校.如图是他本次所用的时间t与离家距离y之间的对应关系,根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是多少米?
(2)小明在书店停留了多少时间?
(3)本次上学途中,小明一共行驶了多少米?一共用了多少时间?
(4)我们认为骑单车的速度超过300m/min就超越了安全限度.问:在整个上学的途中,哪个时间段小明骑车速度最快,速度在安全限度内吗?
(1)小明家到学校的路程是多少米?
1500米
(2)小明在书店停留了多少时间?
4分钟
(3)本次上学途中,小明一共行驶了多少米?一共用了多少时间?
2700米
,14分钟
(4)我们认为骑单车的速度超过300m/min就超越了安全限度.问:在整个上学的途中,哪个时间段小明骑车速度最快,速度在安全限度内吗?
12 - 14分钟时间段小明骑车速度最快,速度不在安全限度内
答案:
【解析】:
(1)根据图象,学校的纵坐标为$1500$,小明家的纵坐标为$0$,故小明家到学校的路程是$1500$米。
(2)由图象可知,小明在书店停留的时间为从$8$分钟到$12$分钟,所以停留了$12 - 8 = 4$分钟。
(3)一共行驶的路程:$1200+(1200 - 600)+(1500 - 600)=1200 + 600 + 900 = 2700$(米);一共用了$14$分钟。
(4)分别计算不同时间段的速度:
$0 - 6$分钟时,速度$v_1=\frac{1200}{6}=200$($m/min$);
$6 - 8$分钟时,速度$v_2=\frac{1200 - 600}{8 - 6}=\frac{600}{2}=300$($m/min$);
$12 - 14$分钟时,速度$v_3=\frac{1500 - 600}{14 - 12}=\frac{900}{2}=450$($m/min$)。
比较$200$、$300$、$450$大小,$200\lt300\lt450$,所以$12 - 14$分钟时速度最快,且$450\gt300$,不在安全限度内。
【答案】:
(1)$1500$米
(2)$4$分钟
(3)$2700$米,$14$分钟
(4)$12 - 14$分钟时间段小明骑车速度最快,速度不在安全限度内。
(1)根据图象,学校的纵坐标为$1500$,小明家的纵坐标为$0$,故小明家到学校的路程是$1500$米。
(2)由图象可知,小明在书店停留的时间为从$8$分钟到$12$分钟,所以停留了$12 - 8 = 4$分钟。
(3)一共行驶的路程:$1200+(1200 - 600)+(1500 - 600)=1200 + 600 + 900 = 2700$(米);一共用了$14$分钟。
(4)分别计算不同时间段的速度:
$0 - 6$分钟时,速度$v_1=\frac{1200}{6}=200$($m/min$);
$6 - 8$分钟时,速度$v_2=\frac{1200 - 600}{8 - 6}=\frac{600}{2}=300$($m/min$);
$12 - 14$分钟时,速度$v_3=\frac{1500 - 600}{14 - 12}=\frac{900}{2}=450$($m/min$)。
比较$200$、$300$、$450$大小,$200\lt300\lt450$,所以$12 - 14$分钟时速度最快,且$450\gt300$,不在安全限度内。
【答案】:
(1)$1500$米
(2)$4$分钟
(3)$2700$米,$14$分钟
(4)$12 - 14$分钟时间段小明骑车速度最快,速度不在安全限度内。
找破绽
有式子:$1元=100分$
$=10分×10分$
$=0.1元×0.1元$
$=0.01元$
$=1分$.
上面的式子对吗?为什么?
有式子:$1元=100分$
$=10分×10分$
$=0.1元×0.1元$
$=0.01元$
$=1分$.
上面的式子对吗?为什么?
不对。因为$100$分$ = 10$分$×10$,而不能表示为$10$分$×10$分,后面的步骤也是如此,所以上面的式子不对。
答案:
【解析】:在进行单位换算和乘法运算时,要遵循正确的数学逻辑。“分”是货币单位,在计算时,$100$分是$10$个$10$分,即$100$分$ = 10$分$\times10$,这里的$10$是个数,没有单位;而$10$分$\times10$分得到的是“分²”,这在货币运算中是没有意义的。同理,$0.1$元$\times0.1$元得到的是“元²”,也是没有意义的,正确的应该是$0.1$元$\times10 = 1$元。所以该式子的推导过程是错误的。
【答案】:不对。因为$100$分$ = 10$分$\times10$,而不能表示为$10$分$\times10$分,后面的步骤也是如此,所以上面的式子不对。
【答案】:不对。因为$100$分$ = 10$分$\times10$,而不能表示为$10$分$\times10$分,后面的步骤也是如此,所以上面的式子不对。
查看更多完整答案,请扫码查看