1. 如图6-24,在$\square ABCD$中,将$\triangle ADC$沿AC折叠后,点D恰好落在DC的延长线上的点E处.若$\angle B = 60^{\circ}$,$AB = 3$,则$\triangle ADE$的周长为()

A. 12
B. 15
C. 18
D. 21
A. 12
B. 15
C. 18
D. 21
答案:
C
2. 如图6-25,在$\square ABCD$中,$BE \perp AB$交对角线AC于点E,若$\angle 1 = 20^{\circ}$,则$\angle 2$的度数为()

A. $110^{\circ}$
B. $120^{\circ}$
C. $135^{\circ}$
D. $140^{\circ}$
A. $110^{\circ}$
B. $120^{\circ}$
C. $135^{\circ}$
D. $140^{\circ}$
答案:
A
3. 在$\square ABCD$中,$AB = 3$,$BC = 4$,当$\square ABCD$的面积最大时,有下列结论:①$AC = 5$;②$\angle A + \angle C = 180^{\circ}$;③$AC \perp BD$;④$AC = BD$.其中正确的有()
A. ①②③
B. ①②④
C. ②③④
D. ①③④
A. ①②③
B. ①②④
C. ②③④
D. ①③④
答案:
B
4. 如图6-26,$\angle 1$,$\angle 2$,$\angle 3$,$\angle 4$是五边形ABCDE的4个外角,若$\angle EAB = 120^{\circ}$,则$\angle 1 + \angle 2 + \angle 3 + \angle 4$等于()

A. $540^{\circ}$
B. $360^{\circ}$
C. $300^{\circ}$
D. $240^{\circ}$
A. $540^{\circ}$
B. $360^{\circ}$
C. $300^{\circ}$
D. $240^{\circ}$
答案:
C
5. 图6-27为长方形ABCD,一条直线将该长方形分割成两个多边形,若这两个多边形的内角和分别为a和b,则$a + b$不可能是()

A. $360^{\circ}$
B. $540^{\circ}$
C. $630^{\circ}$
D. $720^{\circ}$
A. $360^{\circ}$
B. $540^{\circ}$
C. $630^{\circ}$
D. $720^{\circ}$
答案:
C
6. 如图6-28,P是$\square ABCD$的边AD上一点,E,F分别是PB,PC的中点,若$\square ABCD$的面积为$16cm^{2}$,则$\triangle PEF$的面积(阴影部分)是______$cm^{2}$.
答案:
$2$
查看更多完整答案,请扫码查看