1. 平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为(
A. $4 < x < 6$
B. $2 < x < 8$
C. $0 < x < 10$
D. $0 < x < 6$
B
)A. $4 < x < 6$
B. $2 < x < 8$
C. $0 < x < 10$
D. $0 < x < 6$
答案:
B
2. 如图18-1,在$□ ABCD$中,将$\triangle ADC$沿AC折叠后,点D恰好落在DC的延长线上的点E处. 若$\angle B = 60^{\circ}$,$AB = 3$,则$\triangle ADE$的周长为(

A. 12
B. 15
C. 18
D. 21
C
)A. 12
B. 15
C. 18
D. 21
答案:
C
3. 如图18-2,在$□ ABCD$中,延长AB至E点,使$BE = AB$,连接DE交BC于F点,则下列结论不一定成立的是(

A. $\angle E = \angle CDF$
B. $EF = DF$
C. $AD = 2BF$
D. $BE = 2CF$
D
)A. $\angle E = \angle CDF$
B. $EF = DF$
C. $AD = 2BF$
D. $BE = 2CF$
答案:
D
4. 如图18-3,在$□ ABCD$中,$\angle B = 110^{\circ}$,延长AD至F点,延长CD至E点,连接EF,则$\angle E + \angle F$等于(

A. $110^{\circ}$
B. $30^{\circ}$
C. $50^{\circ}$
D. $70^{\circ}$
D
)A. $110^{\circ}$
B. $30^{\circ}$
C. $50^{\circ}$
D. $70^{\circ}$
答案:
D
5. 如图18-4,在$□ ABCD$中,$AB = 2$,$BC = 3$. 以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于$\frac{1}{2}PQ$的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是(

A. $\frac{1}{2}$
B. 1
C. $\frac{6}{5}$
D. $\frac{3}{2}$
B
)A. $\frac{1}{2}$
B. 1
C. $\frac{6}{5}$
D. $\frac{3}{2}$
答案:
B 提示:由题意,可知 CE 是$∠BCD$的平分线,$\therefore ∠BCE=∠DCE$.$\because$ 四边形 ABCD 是平行四边形,$\therefore AB// CD$,$\therefore ∠DCE=∠E$,$\therefore ∠BCE=∠AEC$,$\therefore BE=BC=3$.$\because AB=2$,$\therefore AE=BE-AB=1$.
6. 如图18-5,在$□ ABCD$中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F. 求证:$AE = CF$.
证明:
证明:
$\because 平行四边形ABCD$的对角线 AC, BD 交于点 O,$\therefore AO=CO$,$AD// BC$,$\therefore ∠EAO=∠FCO$. 在$\triangle AOE$和$\triangle COF$中,$\left\{\begin{array}{l} ∠EAO=∠FCO,\\ AO=CO,\\ ∠AOE=∠COF,\end{array}\right. $$\therefore \triangle AOE\cong \triangle COF(ASA)$,$\therefore AE=CF$.
答案:
$\because 平行四边形ABCD$的对角线 AC, BD 交于点 O,$\therefore AO=CO$,$AD// BC$,$\therefore ∠EAO=∠FCO$. 在$\triangle AOE$和$\triangle COF$中,$\left\{\begin{array}{l} ∠EAO=∠FCO,\\ AO=CO,\\ ∠AOE=∠COF,\end{array}\right. $$\therefore \triangle AOE\cong \triangle COF(ASA)$,$\therefore AE=CF$.
查看更多完整答案,请扫码查看