2025年启东中学作业本八年级数学上册苏科版连淮专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年启东中学作业本八年级数学上册苏科版连淮专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年启东中学作业本八年级数学上册苏科版连淮专版》

14. (2024·淮阴区期末)计算:(1)$-1^{2024}-|1-\sqrt{2}|+(\pi-2)^0$;
(2)$-\sqrt[3]{27}+(-2)^2+\sqrt{16}÷\left(-\frac{2}{3}\right)$;
(3)$|-\sqrt{2}|-(\sqrt{3}-\sqrt{2})-|\sqrt{3}-2|$;
(4)$\sqrt[3]{125}+\sqrt{(-2)^2}-\sqrt{|-25|}-(-1)^{2024}$.
答案: 解:
(1) 原式 $=-1-(\sqrt{2}-1)+1=1-\sqrt{2}$.
(2) 原式 $=-3+4+4 ×\left(-\frac{3}{2}\right)=1-6=-5$.
(3) 原式 $=\sqrt{2}-\sqrt{3}+\sqrt{2}-(2-\sqrt{3})=\sqrt{2}-\sqrt{3}+\sqrt{2}-2+\sqrt{3}=2 \sqrt{2}-2$.
(4) 原式 $=5+2-5-1=1$.
15. 阅读材料,并回答问题:
$\because4<5<9$,$\therefore\sqrt{4}<\sqrt{5}<\sqrt{9}$,即$2<\sqrt{5}<3$,$\therefore\sqrt{5}$的整数部分为2,小数部分为$\sqrt{5}-2$.
(1)类比上述方法,求$\sqrt{20}$的整数部分和小数部分;
(2)试判断$\frac{\sqrt{20}-4}{3}与\frac{1}{3}$的大小关系,并说明理由.
答案: 解:
(1) $\because 16<20<25, \therefore 4<\sqrt{20}<5$, 则 $\sqrt{20}$ 的整数部分为 4, 小数部分为 $\sqrt{20}-4$.
(2) $\frac{\sqrt{20}-4}{3}<\frac{1}{3}$, 理由如下: $\because \frac{\sqrt{20}-4}{3}-\frac{1}{3}=\frac{\sqrt{20}-5}{3}<0, \therefore \frac{\sqrt{20}-4}{3}<\frac{1}{3}$.
16. 如图,实数a,b,c是数轴上三点A,B,C所对应的数,化简:$\sqrt{a^2}+|a-b|+\sqrt[3]{(a+b)^3}-|b-c|$.
答案: 解: 原式 $=|a|+|a-b|+a+b-|b-c|=-a+a-b+a+b-c+b=a+b-c$.
17. 比较两个实数的大小,有多种方法.
例如,比较$\frac{\sqrt{3}-1}{3}与\frac{1}{3}$的大小.
方法一:$\frac{\sqrt{3}-1}{3}-\frac{1}{3}= \frac{\sqrt{3}-2}{3}$.
$\because\sqrt{3}-2<0$,$\therefore\frac{\sqrt{3}-1}{3}-\frac{1}{3}<0$,即$\frac{\sqrt{3}-1}{3}<\frac{1}{3}$.
方法二:$\because\frac{\sqrt{3}-1}{3}\approx0.244$,$0.244<\frac{1}{3}$,$\therefore\frac{\sqrt{3}-1}{3}<\frac{1}{3}$.
用两种方法比较$\sqrt{7}+5与11-\sqrt{7}$的大小.($\sqrt{7}\approx2.646$)
答案: 解: 方法一: $\sqrt{7}+5-(11-\sqrt{7})=\sqrt{7}+5-11+\sqrt{7}=2 \sqrt{7}-6$. $\because \sqrt{7}<3, \therefore 2 \sqrt{7}<6, \therefore 2 \sqrt{7}-6<0, \therefore \sqrt{7}+5<11-\sqrt{7}$.
方法二: $\because \sqrt{7} \approx 2.646, \sqrt{7}+5 \approx 2.646+5=7.646$, $11-\sqrt{7} \approx 11-2.646=8.354,7.646<8.354$, $\therefore \sqrt{7}+5<11-\sqrt{7}$.

查看更多完整答案,请扫码查看

关闭