第45页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
9.(2024·东海县期中)如图,在△ABC中,AC和BC的垂直平分线$l_1和l_2$分别交AB于点D,E.若AD= 3,DE= 4,EB= 5,则△ABC的面积等于______

18
.
答案:
18
10.如图,F是正五边形ABCDE中边DE的中点,连接BF并延长与CD的延长线交于点G,则∠BGC的度数为
18°
.
答案:
$18 ^ { \circ }$
11.(15分)(2024·陕西)如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角△ABC,使得顶点B和顶点C都在直线l上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)

答案:
解:如答图所示,等腰直角$\triangle ABC$即为所求.
解:如答图所示,等腰直角$\triangle ABC$即为所求.
12.(15分)(2024·灌南县期中)如图,在△ABC中,AB= AC,D为BC边上一点,∠B= 30°,∠DAB= 45°.
(1)求∠DAC的度数;
(2)求证:DC= AB.

(1)求∠DAC的度数;
(2)求证:DC= AB.
答案:
(1)解:$\because AB = AC$,$\therefore \angle C = \angle B = 30 ^ { \circ }$.
$\because \angle C + \angle BAC + \angle B = 180 ^ { \circ }$,
$\therefore \angle BAC = 180 ^ { \circ } - 30 ^ { \circ } - 30 ^ { \circ } = 120 ^ { \circ }$.
$\because \angle DAB = 45 ^ { \circ }$,
$\therefore \angle DAC = \angle BAC - \angle DAB = 120 ^ { \circ } - 45 ^ { \circ } = 75 ^ { \circ }$.
(2)证明:$\because \angle DAB = 45 ^ { \circ }$,$\angle DAC = 75 ^ { \circ }$,
$\therefore \angle ADC = \angle B + \angle DAB = 30 ^ { \circ } + 45 ^ { \circ } = 75 ^ { \circ }$,
$\therefore \angle DAC = \angle ADC$,$\therefore DC = AC$.
$\because AB = AC$,$\therefore DC = AB$.
(1)解:$\because AB = AC$,$\therefore \angle C = \angle B = 30 ^ { \circ }$.
$\because \angle C + \angle BAC + \angle B = 180 ^ { \circ }$,
$\therefore \angle BAC = 180 ^ { \circ } - 30 ^ { \circ } - 30 ^ { \circ } = 120 ^ { \circ }$.
$\because \angle DAB = 45 ^ { \circ }$,
$\therefore \angle DAC = \angle BAC - \angle DAB = 120 ^ { \circ } - 45 ^ { \circ } = 75 ^ { \circ }$.
(2)证明:$\because \angle DAB = 45 ^ { \circ }$,$\angle DAC = 75 ^ { \circ }$,
$\therefore \angle ADC = \angle B + \angle DAB = 30 ^ { \circ } + 45 ^ { \circ } = 75 ^ { \circ }$,
$\therefore \angle DAC = \angle ADC$,$\therefore DC = AC$.
$\because AB = AC$,$\therefore DC = AB$.
13.(20分)(2024·海州区期中)在四边形ABDC中,AC= AB,DC= DB,∠CAB= 60°,∠CDB= 120°,E是AC上一点,F是AB延长线上一点,且CE= BF.
(1)在图①中,试说明:DE= DF;
(2)在图②中,若点G在AB上且∠EDG= 60°,试猜想CE,EG,BG之间的数量关系,并证明所归纳结论;
(3)若题中条件“∠CAB= 60°且∠CDB= 120°”改为∠CAB= α,∠CDB= 180°-α,点G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?

(1)在图①中,试说明:DE= DF;
(2)在图②中,若点G在AB上且∠EDG= 60°,试猜想CE,EG,BG之间的数量关系,并证明所归纳结论;
(3)若题中条件“∠CAB= 60°且∠CDB= 120°”改为∠CAB= α,∠CDB= 180°-α,点G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?
答案:
解:
(1)$\because \angle CAB + \angle C + \angle CDB + \angle ABD = 360 ^ { \circ }$,
$\angle CAB = 60 ^ { \circ }$,$\angle CDB = 120 ^ { \circ }$,
$\therefore \angle C + \angle ABD = 180 ^ { \circ }$.
又$\because \angle DBF + \angle ABD = 180 ^ { \circ }$,$\therefore \angle C = \angle DBF$.
在$\triangle CDE$和$\triangle BDF$中,$\begin{cases}CD = BD\\\angle C = \angle DBF\\CE = BF\end{cases}$
$\therefore \triangle CDE \cong \triangle BDF (SAS)$,$\therefore DE = DF$.
(2)$CE + BG = EG$. 证明:$\because \angle BDC = 120 ^ { \circ }$,$\angle EDG = 60 ^ { \circ }$,
$\therefore \angle EDC + \angle BDG = \angle BDC - \angle EDG = 60 ^ { \circ }$.
由
(1),得$\triangle CDE \cong \triangle BDF$,$\therefore \angle CDE = \angle BDF$,
$\therefore \angle BDG + \angle BDF = 60 ^ { \circ }$,即$\angle FDG = 60 ^ { \circ }$,
$\therefore \angle EDG = \angle FDG$.
在$\triangle DEG$和$\triangle DFG$中,$\begin{cases}DE = DF\\\angle EDG = \angle FDG\\DG = DG\end{cases}$
$\therefore \triangle DEG \cong \triangle DFG (SAS)$,$\therefore EG = FG$.
又$\because CE = BF$,$FG = BF + BG$,$\therefore CE + BG = EG$.
(3)当$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$时,$CE + BG = EG$仍然成立,
理由:$\because \angle BDC = 180 ^ { \circ } - \alpha$,$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,
$\therefore \angle EDC + \angle BDG = \angle BDC - \angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$.
由
(1),得$\triangle CDE \cong \triangle BDF$,$\therefore \angle CDE = \angle BDF$,
$\therefore \angle BDG + \angle BDF = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,即$\angle FDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,
$\therefore \angle EDG = \angle FDG$.
在$\triangle DEG$和$\triangle DFG$中,$\begin{cases}DE = DF\\\angle EDG = \angle FDG\\DG = DG\end{cases}$
$\therefore \triangle DEG \cong \triangle DFG (SAS)$,$\therefore EG = FG$.
又$\because CE = BF$,$FG = BF + BG$,$\therefore CE + BG = EG$.
$\therefore$当$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$时,$CE + BG = EG$仍然成立.
(1)$\because \angle CAB + \angle C + \angle CDB + \angle ABD = 360 ^ { \circ }$,
$\angle CAB = 60 ^ { \circ }$,$\angle CDB = 120 ^ { \circ }$,
$\therefore \angle C + \angle ABD = 180 ^ { \circ }$.
又$\because \angle DBF + \angle ABD = 180 ^ { \circ }$,$\therefore \angle C = \angle DBF$.
在$\triangle CDE$和$\triangle BDF$中,$\begin{cases}CD = BD\\\angle C = \angle DBF\\CE = BF\end{cases}$
$\therefore \triangle CDE \cong \triangle BDF (SAS)$,$\therefore DE = DF$.
(2)$CE + BG = EG$. 证明:$\because \angle BDC = 120 ^ { \circ }$,$\angle EDG = 60 ^ { \circ }$,
$\therefore \angle EDC + \angle BDG = \angle BDC - \angle EDG = 60 ^ { \circ }$.
由
(1),得$\triangle CDE \cong \triangle BDF$,$\therefore \angle CDE = \angle BDF$,
$\therefore \angle BDG + \angle BDF = 60 ^ { \circ }$,即$\angle FDG = 60 ^ { \circ }$,
$\therefore \angle EDG = \angle FDG$.
在$\triangle DEG$和$\triangle DFG$中,$\begin{cases}DE = DF\\\angle EDG = \angle FDG\\DG = DG\end{cases}$
$\therefore \triangle DEG \cong \triangle DFG (SAS)$,$\therefore EG = FG$.
又$\because CE = BF$,$FG = BF + BG$,$\therefore CE + BG = EG$.
(3)当$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$时,$CE + BG = EG$仍然成立,
理由:$\because \angle BDC = 180 ^ { \circ } - \alpha$,$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,
$\therefore \angle EDC + \angle BDG = \angle BDC - \angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$.
由
(1),得$\triangle CDE \cong \triangle BDF$,$\therefore \angle CDE = \angle BDF$,
$\therefore \angle BDG + \angle BDF = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,即$\angle FDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$,
$\therefore \angle EDG = \angle FDG$.
在$\triangle DEG$和$\triangle DFG$中,$\begin{cases}DE = DF\\\angle EDG = \angle FDG\\DG = DG\end{cases}$
$\therefore \triangle DEG \cong \triangle DFG (SAS)$,$\therefore EG = FG$.
又$\because CE = BF$,$FG = BF + BG$,$\therefore CE + BG = EG$.
$\therefore$当$\angle EDG = 90 ^ { \circ } - \frac { 1 } { 2 } \alpha$时,$CE + BG = EG$仍然成立.
查看更多完整答案,请扫码查看