第62页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
1. [2024 福建福州仓山月考]下列图形中表示的角是圆心角的是 (

A
)
答案:
A 四个选项中只有选项 A 中的图形表示的角是圆心角.故选 A.
2. [学科特色 教材变式 P85T2]如图,A、B、C、D 都是$\odot O$上的点,若$CD= BD$,$∠AOC= 108^{\circ }$,则$∠AOD= $ (

A.$140^{\circ }$
B.$144^{\circ }$
C.$146^{\circ }$
D.$150^{\circ }$
B
)A.$140^{\circ }$
B.$144^{\circ }$
C.$146^{\circ }$
D.$150^{\circ }$
答案:
B $\because ∠AOC = 108^{\circ}$,$\therefore ∠BOC = 180^{\circ} - 108^{\circ} = 72^{\circ}$,$\because CD = BD$,$\therefore ∠BOD = ∠COD = \frac{1}{2}∠BOC = 36^{\circ}$,$\therefore ∠AOD = ∠AOC + ∠COD = 108^{\circ} + 36^{\circ} = 144^{\circ}$.故选 B.
3. [2025 江苏扬州宝应期中]如图,在$\odot O$中,点 A、B、C 在圆上,且弧 AB 的长等于弧 AC 长的 2 倍,则下列结论正确的是 ( )

A.$AB= 2AC$
B.$AB>2AC$
C.$AB<2AC$
D.以上结论都不对
A.$AB= 2AC$
B.$AB>2AC$
C.$AB<2AC$
D.以上结论都不对
答案:
C 如图,取$\overset{\frown}{AB}$的中点 H,连接 AH、BH,则$\overset{\frown}{AH} = \overset{\frown}{BH}$,$\because$弧 AB 的长等于弧 AC 长的 2 倍,$\therefore \overset{\frown}{AH} = \overset{\frown}{BH} = \overset{\frown}{AC}$,$\therefore AH = BH = AC$,在$\triangle ABH$中,$AH + BH > AB$,$\therefore AB < 2AC$,故选 C.
C 如图,取$\overset{\frown}{AB}$的中点 H,连接 AH、BH,则$\overset{\frown}{AH} = \overset{\frown}{BH}$,$\because$弧 AB 的长等于弧 AC 长的 2 倍,$\therefore \overset{\frown}{AH} = \overset{\frown}{BH} = \overset{\frown}{AC}$,$\therefore AH = BH = AC$,在$\triangle ABH$中,$AH + BH > AB$,$\therefore AB < 2AC$,故选 C.
4. [2025 江苏徐州新沂期中]如图,在$\triangle ABC$中,$AB= AC$,$∠C= 67.5^{\circ }$,以 AB 为直径的半圆与 BC,AC 分别相交于点 D,E,则弧 AE 所对圆心角的度数为 ( )

A.$40^{\circ }$
B.$50^{\circ }$
C.$90^{\circ }$
D.$100^{\circ }$
A.$40^{\circ }$
B.$50^{\circ }$
C.$90^{\circ }$
D.$100^{\circ }$
答案:
C 如图,连接 OE,$\because AB = AC$,$\therefore ∠B = ∠C = 67.5^{\circ}$,$\therefore ∠BAC = 180^{\circ} - 67.5^{\circ} - 67.5^{\circ} = 45^{\circ}$,$\because OA = OE$,$\therefore ∠AEO = ∠BAC = 45^{\circ}$,$\therefore ∠AOE = 180^{\circ} - 2×45^{\circ} = 90^{\circ}$,$\therefore$弧 AE 所对圆心角的度数为$90^{\circ}$,故选 C.
C 如图,连接 OE,$\because AB = AC$,$\therefore ∠B = ∠C = 67.5^{\circ}$,$\therefore ∠BAC = 180^{\circ} - 67.5^{\circ} - 67.5^{\circ} = 45^{\circ}$,$\because OA = OE$,$\therefore ∠AEO = ∠BAC = 45^{\circ}$,$\therefore ∠AOE = 180^{\circ} - 2×45^{\circ} = 90^{\circ}$,$\therefore$弧 AE 所对圆心角的度数为$90^{\circ}$,故选 C.
5. [2024 上海长宁二模]如图,已知点 A、B、C、D 都在$\odot O$上,$OB⊥AC$,$BC= CD$,下列说法错误的是 (

A.$\overset{\frown }{AB}= \overset{\frown }{BC}$
B.$∠AOD= 3∠BOC$
C.$AC= 2CD$
D.$OC⊥BD$
C
)A.$\overset{\frown }{AB}= \overset{\frown }{BC}$
B.$∠AOD= 3∠BOC$
C.$AC= 2CD$
D.$OC⊥BD$
答案:
C A.$\because OB⊥AC$,$\therefore \overset{\frown}{AB} = \overset{\frown}{BC}$,故不符合题意;B.$\because \overset{\frown}{AB} = \overset{\frown}{BC}$,$\therefore ∠AOB = ∠COB$,$\because BC = CD$,$\therefore ∠BOC = ∠DOC$,$\therefore ∠AOD = 3∠BOC$,故不符合题意;C.$\because ∠AOB = ∠BOC = ∠DOC$,$\therefore ∠AOC = ∠BOD$,$\therefore AC = BD$,$\because BD < BC + CD = 2CD$,$\therefore AC < 2CD$,故符合题意;D.$\because OB = OD$,$BC = DC$,$\therefore OC⊥BD$,故不符合题意.故选 C.
6. [2025 江苏南通启东月考]如图,AB 是$\odot O$的直径,$∠BOD= 120^{\circ }$,点 C 为弧 BD 的中点,AC 交 OD 于点 E,$DE= 1$,则 AE 的长为 ( )

A.$2\sqrt {5}$
B.$\sqrt {5}$
C.$2\sqrt {3}$
D.$\sqrt {3}$
A.$2\sqrt {5}$
B.$\sqrt {5}$
C.$2\sqrt {3}$
D.$\sqrt {3}$
答案:
D 如图,连接 OC.$\because ∠DOB = 120^{\circ}$,$\therefore ∠AOD = 60^{\circ}$,$\because$点 C 为$\overset{\frown}{BD}$的中点,$\therefore \overset{\frown}{CD} = \overset{\frown}{BC}$,$\therefore ∠DOC = ∠BOC = 60^{\circ}$,$\therefore ∠DOC = ∠AOD$,$\therefore \overset{\frown}{AD} = \overset{\frown}{CD}$,$\therefore OD⊥AC$,$\therefore ∠AEO = 90^{\circ}$,$\therefore ∠OAE = 30^{\circ}$,$\therefore OE = \frac{1}{2}OA$.设$OA = r$,则$OE = \frac{1}{2}r$,易知$OE = DE$,$\therefore \frac{1}{2}r = 1$,$\therefore r = 2$,即$OA = 2$,$\therefore AE = \sqrt{OA^{2} - OE^{2}} = \sqrt{3}$.故选 D.
D 如图,连接 OC.$\because ∠DOB = 120^{\circ}$,$\therefore ∠AOD = 60^{\circ}$,$\because$点 C 为$\overset{\frown}{BD}$的中点,$\therefore \overset{\frown}{CD} = \overset{\frown}{BC}$,$\therefore ∠DOC = ∠BOC = 60^{\circ}$,$\therefore ∠DOC = ∠AOD$,$\therefore \overset{\frown}{AD} = \overset{\frown}{CD}$,$\therefore OD⊥AC$,$\therefore ∠AEO = 90^{\circ}$,$\therefore ∠OAE = 30^{\circ}$,$\therefore OE = \frac{1}{2}OA$.设$OA = r$,则$OE = \frac{1}{2}r$,易知$OE = DE$,$\therefore \frac{1}{2}r = 1$,$\therefore r = 2$,即$OA = 2$,$\therefore AE = \sqrt{OA^{2} - OE^{2}} = \sqrt{3}$.故选 D.
7. [2024 河南驻马店汝南期中]如图,点 A 在半圆 O 上,BC 是直径,$\overset{\frown }{AB}= \overset{\frown }{AC}$,若$BC= 3\sqrt {2}$,则 AB 的长为

______.
______.
答案:
答案 3
解析 如图,连接 AC,OA,$\because \overset{\frown}{AB} = \overset{\frown}{AC}$,$\therefore AB = AC$,$∠AOB = ∠AOC = 90^{\circ}$,$\because OA = OB = OC$,$\therefore ∠BAO = ∠CAO = 45^{\circ}$,$\therefore ∠BAC = 90^{\circ}$,$\therefore \triangle ABC$为等腰直角三角形,$\therefore 2AB^{2} = (3\sqrt{2})^{2}$,$\therefore AB = 3$(舍负).
答案 3
解析 如图,连接 AC,OA,$\because \overset{\frown}{AB} = \overset{\frown}{AC}$,$\therefore AB = AC$,$∠AOB = ∠AOC = 90^{\circ}$,$\because OA = OB = OC$,$\therefore ∠BAO = ∠CAO = 45^{\circ}$,$\therefore ∠BAC = 90^{\circ}$,$\therefore \triangle ABC$为等腰直角三角形,$\therefore 2AB^{2} = (3\sqrt{2})^{2}$,$\therefore AB = 3$(舍负).
8. [2025 江苏镇江月考]如图,AB、CD 是$\odot O$的两条弦,AC 与 BD 相交于点 E,$AB= CD$.
(1)求证:$AC= BD$.
(2)连接 BC,作直线 EO,求证:$EO⊥BC$.

(1)求证:$AC= BD$.
(2)连接 BC,作直线 EO,求证:$EO⊥BC$.
答案:
证明
(1)$\because AB = CD$,$\therefore \overset{\frown}{AB} = \overset{\frown}{CD}$,$\therefore \overset{\frown}{AB} + \overset{\frown}{AD} = \overset{\frown}{CD} + \overset{\frown}{AD}$,即$\overset{\frown}{BD} = \overset{\frown}{AC}$,$\therefore AC = BD$.
(2)如图,连接 OB、OC,在$\triangle ABC$和$\triangle DCB$中,$\begin{cases}AB = DC,\\AC = BD,\\BC = BC,\end{cases}$ $\therefore \triangle ABC ≌ \triangle DCB$,$\therefore ∠ACB = ∠DBC$,$\therefore EB = EC$,$\because OB = OC$,$\therefore$点 E、O 都在 BC 的垂直平分线上,$\therefore EO⊥BC$.
证明
(1)$\because AB = CD$,$\therefore \overset{\frown}{AB} = \overset{\frown}{CD}$,$\therefore \overset{\frown}{AB} + \overset{\frown}{AD} = \overset{\frown}{CD} + \overset{\frown}{AD}$,即$\overset{\frown}{BD} = \overset{\frown}{AC}$,$\therefore AC = BD$.
(2)如图,连接 OB、OC,在$\triangle ABC$和$\triangle DCB$中,$\begin{cases}AB = DC,\\AC = BD,\\BC = BC,\end{cases}$ $\therefore \triangle ABC ≌ \triangle DCB$,$\therefore ∠ACB = ∠DBC$,$\therefore EB = EC$,$\because OB = OC$,$\therefore$点 E、O 都在 BC 的垂直平分线上,$\therefore EO⊥BC$.
查看更多完整答案,请扫码查看