2025年阳光同学分层设计九年级数学全一册人教版福建专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年阳光同学分层设计九年级数学全一册人教版福建专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年阳光同学分层设计九年级数学全一册人教版福建专版》

第126页
5. 在同一平面直角坐标系中,函数$y= kx+1与y= \frac {k}{x}(k≠0)$的图象可能是(
A
)
答案: A
6. (2024 安徽)若反比例函数$y= \frac {k}{x}(k≠0)与一次函数y= 2-x$的图象的一个交点的横坐标为3,则k的值为(
A
)
A. -3
B. -1
C. 1
D. 3
答案: A
7. 如图,正比例函数$y= kx(k≠0)的图象与反比例函数y= -\frac {6}{x}$的图象相交于 A,B 两点.若点 A 的横坐标是-3,则点 B 的坐标是
$(3,-2)$
.
答案: $(3,-2)$
8. 易错题若一个反比例函数的图象经过点$A(m,m)和B(2m,-1)$,则 m 的值为
-2
.
答案: -2
9. 如图,一次函数$y= mx+n的图象与反比例函数y= \frac {k}{x}的图象交于点A(-2,a)和点B(b,-1)$,过点 A 作 x 轴的垂线,垂足为 C.已知$△AOC$的面积为 4.
(1)分别求出 a 和 b 的值;
a=4,b=8

(2)求$△AOB$的面积;
15

(3)结合图象,直接写出$mx+n>\frac {k}{x}$中x的取值范围:
x<-2或0<x<8
.
答案:
(1)$a=4,b=8$
(2)15
(3)$x<-2$或$0\lt x<8$
10. 如图,已知直线$y= x+2$分别与x轴、y轴交于A,B两点,与双曲线$y= \frac {m}{x}(x<0)$交于 E,F 两点.若$AB= 2EF$,求 m 的值.
答案:
解:如图,作$FH⊥x$轴于点H,$EC⊥y$轴于点C,FH交EC于点D.
HOx
由直线$y=x+2$,可知点A的坐标为$(-2,0)$,点B的坐标为$(0,2).$
$\therefore OA=OB=2.$
$\therefore \triangle AOB$为等腰直角三角形.
$\therefore AB=2\sqrt {2}.$
$\therefore EF=\frac {1}{2}AB=\sqrt {2}.$
$\therefore \triangle DEF$为等腰直角三角形.
$\therefore FD=DE,$
$\therefore FD^{2}+DE^{2}=EF^{2}=2.$
$\therefore 2FD^{2}=2.$
$\therefore FD=DE=1.$
设点F的横坐标为t,代入$y=x+2,$
得纵坐标是$t+2,$
则点F的坐标为$(t,t+2)$,点E的坐标为$(t-1,t+1),$
∵双曲线$y=\frac {m}{x}$过E,F两点,
$\therefore t(t+2)=(t-1)\cdot (t+1).$
解得$t=-\frac {1}{2}.$
$\therefore$点E的坐标为$(-\frac {3}{2},\frac {1}{2}).$
$\therefore m=-\frac {3}{2}×\frac {1}{2}=-\frac {3}{4}.$

查看更多完整答案,请扫码查看

关闭