2025年通城学典课时作业本八年级数学下册华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典课时作业本八年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典课时作业本八年级数学下册华师大版》

1. (2024·天津)计算$\frac{3x}{x - 1} - \frac{3}{x - 1}$的结果是(  )
A. 3
B. x
C. $\frac{x}{x - 1}$
D. $\frac{3}{x^2 - 1}$
答案: A
2. (2024·晋城陵川二模)计算$\frac{1}{5 - x} + \frac{10}{x^2 - 25}$的结果是(  )
A. x + 5
B. x - 5
C. $-\frac{1}{x + 5}$
D. $\frac{1}{x + 5}$
答案: C
3. (2024·临汾蒲县期末)计算$(\frac{2}{m^2 - mn} + \frac{1}{m^2 + mn}) \div \frac{1}{m^2 - n^2}$的结果是(  )
A. $\frac{3}{m}$
B. $\frac{m + n}{m}$
C. $\frac{3m + n}{m}$
D. $\frac{3m - n}{m}$
答案: C
4. 计算:
(1) $\frac{x^2 - 1}{x - 2} - \frac{x}{x - 2} - \frac{1 + x}{2 - x} =$________;
(2) $(1 - \frac{1}{x + 1}) \cdot \frac{x^2 - 1}{x} =$________.
答案:
(1)x + 2 
(2)x - 1
5. 已知$\frac{A}{x - 1} + \frac{B}{2 - x} = \frac{2x - 6}{(x - 1)(x - 2)}$,则$A =$________,$B =$________.
答案: 4  - 2
6. 若$xy = 1$,则$\frac{x}{1 + x} + \frac{y}{1 + y}$的值为________.
答案: 1
7. (2024·连云港)下面是某同学计算$\frac{1}{m - 1} - \frac{2}{m^2 - 1}$的解题过程:
解: $\frac{1}{m - 1} - \frac{2}{m^2 - 1}$
$= \frac{m + 1}{(m + 1)(m - 1)} - \frac{2}{(m + 1)(m - 1)}$……①
$= \frac{(m + 1) - 2}{(m + 1)(m - 1)}$……②
$= \frac{m - 1}{(m + 1)(m - 1)}$
$= \frac{1}{m + 1}$
该同学的解题过程从第几步开始出现错误?请写出完整的正确解题过程.
答案: 从第②步开始出现错误,原式=$\frac{m + 1}{(m + 1)(m - 1)} - \frac{2}{(m + 1)(m - 1)} = \frac{m + 1 - 2}{(m + 1)(m - 1)} = \frac{m - 1}{(m + 1)(m - 1)} = \frac{1}{m + 1}$
8. 计算:
(1) $\frac{a^2 + 2a}{a} \cdot \frac{a}{a^2 - 4} - \frac{2}{a - 2}$;
(2) (2024·辽宁)$\frac{a}{a + 1} \cdot \frac{a^2 - 1}{a^2} + \frac{1}{a}$;
(3) (2024·泰安)$(x - \frac{2x - 1}{x}) \div \frac{x^2 - 1}{x}$.
答案:
(1)原式=$\frac{a(a + 2)}{a} \cdot \frac{a}{(a + 2)(a - 2)} - \frac{2}{a - 2} = \frac{a}{a - 2} - \frac{2}{a - 2} = \frac{a - 2}{a - 2} = 1$
(2)原式=$\frac{a}{a + 1} \cdot \frac{(a + 1)(a - 1)}{a^2} + \frac{1}{a} = \frac{a - 1}{a} + \frac{1}{a} = \frac{a}{a} = 1$
(3)原式=$\frac{x^2 - 2x + 1}{x} \cdot \frac{x}{x^2 - 1} = \frac{(x - 1)^2}{x} \cdot \frac{x}{(x + 1)(x - 1)} = \frac{x - 1}{x + 1}$
9. 先化简,再求值:$(1 + \frac{a + 7}{a + 1}) \div \frac{a + 4}{a}$,其中$a = 4$.
答案: 原式=$\frac{a + 1 + a + 7}{a + 1} \div \frac{a + 4}{a} = \frac{2a + 8}{a + 1} \div \frac{a + 4}{a} = \frac{2(a + 4)}{a + 1} \cdot \frac{a}{a + 4} = \frac{2a}{a + 1}$。当a = 4时,原式=$\frac{2×4}{4 + 1} = \frac{8}{5}$

查看更多完整答案,请扫码查看

关闭