2025年金考卷特快专递高中数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金考卷特快专递高中数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知曲线$\Gamma:y^{2}=4x$,第一象限内的点$A$在$\Gamma$上,设$A$的纵坐标是$a$.
(1)若点$A$到$\Gamma$的准线的距离为3,求$a$的值;
(2)若$a = 4$,$B$为$x$轴上一点,线段$AB$的中点在$\Gamma$上,求点$B$的坐标和坐标原点$O$到直线$AB$的距离;
(3)设直线$l:x = - 3$,$P$是第一象限$\Gamma$上异于$A$的一点,直线$AP$交直线$l$于点$Q$,点$H$是点$P$在直线$l$上的投影,若点$A$满足性质“当点$P$变化时,$\vert HQ\vert>4$恒成立”,求$a$的取值范围.
已知曲线$\Gamma:y^{2}=4x$,第一象限内的点$A$在$\Gamma$上,设$A$的纵坐标是$a$.
(1)若点$A$到$\Gamma$的准线的距离为3,求$a$的值;
(2)若$a = 4$,$B$为$x$轴上一点,线段$AB$的中点在$\Gamma$上,求点$B$的坐标和坐标原点$O$到直线$AB$的距离;
(3)设直线$l:x = - 3$,$P$是第一象限$\Gamma$上异于$A$的一点,直线$AP$交直线$l$于点$Q$,点$H$是点$P$在直线$l$上的投影,若点$A$满足性质“当点$P$变化时,$\vert HQ\vert>4$恒成立”,求$a$的取值范围.
答案:
抛物线的方程及几何性质+点到直线的距离
解:
(1)由题意,Γ的准线方程为x = -1,A($\frac{a^{2}}{4}$,a),
则$\frac{a^{2}}{4}$+1 = 3,得a² = 8. (3分)
又a>0,
∴a = 2$\sqrt{2}$. (4分)
(2)由题意知,A(4,4),
设B(b,0),则AB中点的坐标为($\frac{4 + b}{2}$,2),代入y² = 4x,得4 = 2(4 + b),
∴b = -2,
∴点B的坐标为(-2,0). (6分)
则直线AB的斜率为$\frac{4 - 0}{4 - (-2)}$ = $\frac{2}{3}$,
∴直线AB的方程为y = $\frac{2}{3}$(x + 2),即2x - 3y + 4 = 0.
∴坐标原点O到直线AB的距离为$\frac{4}{\sqrt{2^{2} + (-3)^{2}}}$ = $\frac{4}{\sqrt{13}}$ = $\frac{4\sqrt{13}}{13}$. (10分)
(3)由题意知,A($\frac{a^{2}}{4}$,a),a>0,
设P($\frac{y_{0}^{2}}{4}$,y_{0})(y_{0}>0),则H(-3,y_{0}),直线AP的斜率k_{AP} = $\frac{a - y_{0}}{\frac{a^{2}}{4} - \frac{y_{0}^{2}}{4}}$ = $\frac{4}{a + y_{0}}$,
直线AP的方程为y = $\frac{4}{a + y_{0}}$(x - $\frac{a^{2}}{4}$) + a,
∴Q(-3,$\frac{4(-3 - \frac{a^{2}}{4})}{a + y_{0}}$ + a). (12分)
∴|HQ| = |y_{0} - $\frac{-12 - a^{2} + a^{2} + ay_{0}}{a + y_{0}}$| = |y_{0} - $\frac{ay_{0} - 12}{a + y_{0}}$| = $\frac{y_{0}^{2} + 12}{a + y_{0}}$>4恒成立,
∴a < $\frac{y_{0}^{2} + 12}{4}$ - y_{0} = $\frac{y_{0}^{2}}{4}$ - y_{0} + 3 = $\frac{1}{4}$(y_{0} - 2)² + 2即a - 2 < $\frac{1}{4}$(y_{0} - 2)²(y_{0}∈(0,a)∪(a,+∞))恒成立.
当a = 2时,由y_{0}≠a得y_{0}≠2,则a - 2 < $\frac{1}{4}$(y_{0} - 2)²恒成立;当a - 2 < 0,即0 < a < 2时,a - 2 < $\frac{1}{4}$(y_{0} - 2)²恒成立.
综上,a的取值范围是(0,2]. (16分)
解:
(1)由题意,Γ的准线方程为x = -1,A($\frac{a^{2}}{4}$,a),
则$\frac{a^{2}}{4}$+1 = 3,得a² = 8. (3分)
又a>0,
∴a = 2$\sqrt{2}$. (4分)
(2)由题意知,A(4,4),
设B(b,0),则AB中点的坐标为($\frac{4 + b}{2}$,2),代入y² = 4x,得4 = 2(4 + b),
∴b = -2,
∴点B的坐标为(-2,0). (6分)
则直线AB的斜率为$\frac{4 - 0}{4 - (-2)}$ = $\frac{2}{3}$,
∴直线AB的方程为y = $\frac{2}{3}$(x + 2),即2x - 3y + 4 = 0.
∴坐标原点O到直线AB的距离为$\frac{4}{\sqrt{2^{2} + (-3)^{2}}}$ = $\frac{4}{\sqrt{13}}$ = $\frac{4\sqrt{13}}{13}$. (10分)
(3)由题意知,A($\frac{a^{2}}{4}$,a),a>0,
设P($\frac{y_{0}^{2}}{4}$,y_{0})(y_{0}>0),则H(-3,y_{0}),直线AP的斜率k_{AP} = $\frac{a - y_{0}}{\frac{a^{2}}{4} - \frac{y_{0}^{2}}{4}}$ = $\frac{4}{a + y_{0}}$,
直线AP的方程为y = $\frac{4}{a + y_{0}}$(x - $\frac{a^{2}}{4}$) + a,
∴Q(-3,$\frac{4(-3 - \frac{a^{2}}{4})}{a + y_{0}}$ + a). (12分)
∴|HQ| = |y_{0} - $\frac{-12 - a^{2} + a^{2} + ay_{0}}{a + y_{0}}$| = |y_{0} - $\frac{ay_{0} - 12}{a + y_{0}}$| = $\frac{y_{0}^{2} + 12}{a + y_{0}}$>4恒成立,
∴a < $\frac{y_{0}^{2} + 12}{4}$ - y_{0} = $\frac{y_{0}^{2}}{4}$ - y_{0} + 3 = $\frac{1}{4}$(y_{0} - 2)² + 2即a - 2 < $\frac{1}{4}$(y_{0} - 2)²(y_{0}∈(0,a)∪(a,+∞))恒成立.
当a = 2时,由y_{0}≠a得y_{0}≠2,则a - 2 < $\frac{1}{4}$(y_{0} - 2)²恒成立;当a - 2 < 0,即0 < a < 2时,a - 2 < $\frac{1}{4}$(y_{0} - 2)²恒成立.
综上,a的取值范围是(0,2]. (16分)
21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数$f(x)=\ln x$. 取$a_{1}>0$,过点$(a_{1},f(a_{1}))$作曲线$y = f(x)$的切线,交$y$轴于点$(0,a_{2})$;$a_{2}>0$,过点$(a_{2},f(a_{2}))$作曲线$y = f(x)$的切线,交$y$轴于点$(0,a_{3})$,以此类推,若$a_{n}\leqslant0,n\in\mathbf{N}^{*}$,则停止操作,得到数列$\{a_{n}\}$.
(1)若正整数$m\geqslant2$,证明:$a_{m}=\ln a_{m - 1}-1$.
(2)若正整数$m\geqslant2$,试比较$a_{m}$与$a_{m - 1}-2$的大小.
(3)若正整数$k\geqslant3$,是否存在$k$使得$a_{1},a_{2},\cdots,a_{k}$依次成等差数列? 若存在,求出$k$的所有取值;若不存在,试说明理由.
已知函数$f(x)=\ln x$. 取$a_{1}>0$,过点$(a_{1},f(a_{1}))$作曲线$y = f(x)$的切线,交$y$轴于点$(0,a_{2})$;$a_{2}>0$,过点$(a_{2},f(a_{2}))$作曲线$y = f(x)$的切线,交$y$轴于点$(0,a_{3})$,以此类推,若$a_{n}\leqslant0,n\in\mathbf{N}^{*}$,则停止操作,得到数列$\{a_{n}\}$.
(1)若正整数$m\geqslant2$,证明:$a_{m}=\ln a_{m - 1}-1$.
(2)若正整数$m\geqslant2$,试比较$a_{m}$与$a_{m - 1}-2$的大小.
(3)若正整数$k\geqslant3$,是否存在$k$使得$a_{1},a_{2},\cdots,a_{k}$依次成等差数列? 若存在,求出$k$的所有取值;若不存在,试说明理由.
答案:
导数的几何意义+数列+利用导数研究函数的性质
解:
(1)由题得,f'(x) = $\frac{1}{x}$,
当正整数m≥2时,曲线y = f(x)在点(a_{m - 1},f(a_{m - 1}))处的切线方程为y - f(a_{m - 1}) = $\frac{1}{a_{m - 1}}$(x - a_{m - 1}),
即y - ln a_{m - 1} = $\frac{1}{a_{m - 1}}$(x - a_{m - 1}). (2分)
又此切线交y轴于点(0,a_{m}),
∴a_{m} - ln a_{m - 1} = -1,
∴a_{m} = ln a_{m - 1} - 1. (4分)
(2)当正整数m≥2时,a_{m} - (a_{m - 1} - 2) = ln a_{m - 1} - 1 - a_{m - 1} + 2 = ln a_{m - 1} - a_{m - 1} + 1.
令g(x) = ln x - x + 1, (6分)
则g'(x) = $\frac{1}{x}$ - 1 = $\frac{1 - x}{x}$,
当0 < x < 1时,g'(x)>0,g(x)单调递增,
当x > 1时,g'(x)<0,g(x)单调递减,
∴g(x)≤g
(1) = 0, (8分)
则ln a_{m - 1} - a_{m - 1} + 1≤0,即a_{m} - (a_{m - 1} - 2)≤0,
∴a_{m}≤a_{m - 1} - 2. (10分)
(3)假设存在正整数k≥3,使得a_{1},a_{2},…,a_{k}依次成等差数列,
设其公差为d,
则d = a_{t} - a_{t - 1} = ln a_{t - 1} - a_{t - 1} - 1(2≤t≤k), (11分)
令h(x) = ln x - x - 1,则h'(x) = $\frac{1}{x}$ - 1,
当0 < x < 1时,h'(x)>0,h(x)单调递增,
当x > 1时,h'(x)<0,h(x)单调递减,
∴h(x)_{max} = h
(1) = -2,即h(x)≤ -2.
此时d≤ -2,
当x→0时,h(x)→ -∞,当x→ +∞时,h(x)→ -∞,
因此直线y = d与h(x)的图象最多有两个交点,即最多三项成等差数列, (15分)
故存在k = 3,使得a_{1},a_{2},a_{3}成等差数列.
下面证明k = 3时,a_{1},a_{2},a_{3}成等差数列,即a_{1} + a_{3} = 2a_{2}.
由
(1)知,a_{2} = ln a_{1} - 1,a_{3} = ln a_{2} - 1,
则a_{1} = e^{a_{2} + 1},
∴e^{a_{2} + 1} + ln a_{2} - 1 = 2a_{2}. (16分)
记函数H(x) = e^{x + 1} + ln x - 1 - 2x,
则H'(x) = e^{x + 1} + $\frac{1}{x}$ - 2,
易知H'(x)>0在(0,+∞)恒成立,
∴H(x)在(0,+∞)单调递增.
易得H(0.1)<0,H
(1)>0,
∴H(x)在(0.1,1)上有唯一零点a_{2}.
故假设成立,存在k = 3,使得a_{1},a_{2},a_{3}成等差数列. (18分)
考情速递 数列与导数综合问题 本题本质上是用导数作为工具来研究数列问题,第
(3)问需先找出k,再完成相应的证明,解题过程中充分利用了函数与方程思想.
解:
(1)由题得,f'(x) = $\frac{1}{x}$,
当正整数m≥2时,曲线y = f(x)在点(a_{m - 1},f(a_{m - 1}))处的切线方程为y - f(a_{m - 1}) = $\frac{1}{a_{m - 1}}$(x - a_{m - 1}),
即y - ln a_{m - 1} = $\frac{1}{a_{m - 1}}$(x - a_{m - 1}). (2分)
又此切线交y轴于点(0,a_{m}),
∴a_{m} - ln a_{m - 1} = -1,
∴a_{m} = ln a_{m - 1} - 1. (4分)
(2)当正整数m≥2时,a_{m} - (a_{m - 1} - 2) = ln a_{m - 1} - 1 - a_{m - 1} + 2 = ln a_{m - 1} - a_{m - 1} + 1.
令g(x) = ln x - x + 1, (6分)
则g'(x) = $\frac{1}{x}$ - 1 = $\frac{1 - x}{x}$,
当0 < x < 1时,g'(x)>0,g(x)单调递增,
当x > 1时,g'(x)<0,g(x)单调递减,
∴g(x)≤g
(1) = 0, (8分)
则ln a_{m - 1} - a_{m - 1} + 1≤0,即a_{m} - (a_{m - 1} - 2)≤0,
∴a_{m}≤a_{m - 1} - 2. (10分)
(3)假设存在正整数k≥3,使得a_{1},a_{2},…,a_{k}依次成等差数列,
设其公差为d,
则d = a_{t} - a_{t - 1} = ln a_{t - 1} - a_{t - 1} - 1(2≤t≤k), (11分)
令h(x) = ln x - x - 1,则h'(x) = $\frac{1}{x}$ - 1,
当0 < x < 1时,h'(x)>0,h(x)单调递增,
当x > 1时,h'(x)<0,h(x)单调递减,
∴h(x)_{max} = h
(1) = -2,即h(x)≤ -2.
此时d≤ -2,
当x→0时,h(x)→ -∞,当x→ +∞时,h(x)→ -∞,
因此直线y = d与h(x)的图象最多有两个交点,即最多三项成等差数列, (15分)
故存在k = 3,使得a_{1},a_{2},a_{3}成等差数列.
下面证明k = 3时,a_{1},a_{2},a_{3}成等差数列,即a_{1} + a_{3} = 2a_{2}.
由
(1)知,a_{2} = ln a_{1} - 1,a_{3} = ln a_{2} - 1,
则a_{1} = e^{a_{2} + 1},
∴e^{a_{2} + 1} + ln a_{2} - 1 = 2a_{2}. (16分)
记函数H(x) = e^{x + 1} + ln x - 1 - 2x,
则H'(x) = e^{x + 1} + $\frac{1}{x}$ - 2,
易知H'(x)>0在(0,+∞)恒成立,
∴H(x)在(0,+∞)单调递增.
易得H(0.1)<0,H
(1)>0,
∴H(x)在(0.1,1)上有唯一零点a_{2}.
故假设成立,存在k = 3,使得a_{1},a_{2},a_{3}成等差数列. (18分)
考情速递 数列与导数综合问题 本题本质上是用导数作为工具来研究数列问题,第
(3)问需先找出k,再完成相应的证明,解题过程中充分利用了函数与方程思想.
查看更多完整答案,请扫码查看