第9页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
1. 如图,在△ABC中,AB = AC = 5,BC = 6,M为BC的中点,MN⊥AC于点N,求MN的长.

答案:
解:连接$AM$,$\because AB = AC = 5$,$BC = 6$,$M$为$BC$的中点,
$\therefore CM=\frac{1}{2}BC = 3$,$AM\perp BC$.$\therefore AM=\sqrt{AC^{2}-CM^{2}}=\sqrt{5^{2}-3^{2}} = 4$.$\because S_{\triangle AMC}=\frac{1}{2}AM\cdot MC=\frac{1}{2}AC\cdot MN$,
$\therefore\frac{1}{2}\times4\times3=\frac{1}{2}\times5MN$,解得$MN = 2.4$.
$\therefore CM=\frac{1}{2}BC = 3$,$AM\perp BC$.$\therefore AM=\sqrt{AC^{2}-CM^{2}}=\sqrt{5^{2}-3^{2}} = 4$.$\because S_{\triangle AMC}=\frac{1}{2}AM\cdot MC=\frac{1}{2}AC\cdot MN$,
$\therefore\frac{1}{2}\times4\times3=\frac{1}{2}\times5MN$,解得$MN = 2.4$.
2. 如图,在△ABC中,AB = AC,D是BC的中点,过点A作EF//BC,且AE = AF,求证:DE = DF.

答案:
证明:连接$AD$.$\because AB = AC$,$D$是$BC$的中点,$\therefore AD\perp BC$. 又$\because EF// BC$,$\therefore AD\perp EF$.$\therefore\angle DAE=\angle DAF = 90^{\circ}$. 又$\because AE = AF$,$AD = AD$,$\therefore\triangle ADE\cong\triangle ADF(SAS)$.$\therefore DE = DF$.
3. 如图,在△ABC中,AC = 2AB,AD平分∠BAC,E是AD上的一点,且EA = EC. 求证:EB⊥AB.

答案:
证明:如图,过点$E$作$EF\perp AC$于点$F$,则$\angle AFE = 90^{\circ}$.

$\because EA = EC$,$\therefore AF = FC=\frac{1}{2}AC$. 又$\because AC = 2AB$,
$\therefore AB = AF$.$\because AD$平分$\angle BAC$,$\therefore\angle BAE=\angle FAE$. 又
$\because AE = AE$,$\therefore\triangle ABE\cong\triangle AFE(SAS)$.$\therefore\angle ABE = \angle AFE = 90^{\circ}$,即$EB\perp AB$.
证明:如图,过点$E$作$EF\perp AC$于点$F$,则$\angle AFE = 90^{\circ}$.
$\because EA = EC$,$\therefore AF = FC=\frac{1}{2}AC$. 又$\because AC = 2AB$,
$\therefore AB = AF$.$\because AD$平分$\angle BAC$,$\therefore\angle BAE=\angle FAE$. 又
$\because AE = AE$,$\therefore\triangle ABE\cong\triangle AFE(SAS)$.$\therefore\angle ABE = \angle AFE = 90^{\circ}$,即$EB\perp AB$.
4. 在四边形ABCD中,AC = BC = BD,AC⊥BD,若AB = √5,求△ABD的面积.

答案:
解:过点$D$作$DE\perp AB$交$BA$的延长
线于点$E$,过点$C$作$CF\perp AB$交$AB$
于点$F$.$\because AC\perp BD$,$CF\perp AB$,
$\therefore\angle ACF+\angle FAC = 90^{\circ}$,$\angle ABD+\angle BAC = 90^{\circ}$.$\therefore\angle ACF = \angle ABD$.
$\because AC = BC$,$CF\perp AB$,$\therefore AF = BF=\frac{\sqrt{5}}{2}$,$\angle ACF = \angle BCF$.$\therefore\angle ABD = \angle BCF$.$\because\angle DEB=\angle AFC = 90^{\circ}$,$\angle ABD=\angle BCF$,$BC = BD$,$\therefore\triangle BDE\cong\triangle CBF(AAS)$.
$\therefore BF = ED=\frac{\sqrt{5}}{2}$.$\therefore\triangle ABD$的面积$=\frac{1}{2}AB\cdot DE=\frac{1}{2}\times\sqrt{5}\times\frac{\sqrt{5}}{2}=\frac{5}{4}$.
解:过点$D$作$DE\perp AB$交$BA$的延长
线于点$E$,过点$C$作$CF\perp AB$交$AB$
于点$F$.$\because AC\perp BD$,$CF\perp AB$,
$\therefore\angle ACF+\angle FAC = 90^{\circ}$,$\angle ABD+\angle BAC = 90^{\circ}$.$\therefore\angle ACF = \angle ABD$.
$\because AC = BC$,$CF\perp AB$,$\therefore AF = BF=\frac{\sqrt{5}}{2}$,$\angle ACF = \angle BCF$.$\therefore\angle ABD = \angle BCF$.$\because\angle DEB=\angle AFC = 90^{\circ}$,$\angle ABD=\angle BCF$,$BC = BD$,$\therefore\triangle BDE\cong\triangle CBF(AAS)$.
$\therefore BF = ED=\frac{\sqrt{5}}{2}$.$\therefore\triangle ABD$的面积$=\frac{1}{2}AB\cdot DE=\frac{1}{2}\times\sqrt{5}\times\frac{\sqrt{5}}{2}=\frac{5}{4}$.
5. 转化思想 如图,在等腰直角三角形ABC中,AB = AC,∠BAC = 90°,BF平分∠ABC,CD⊥BF交BF的延长线于点D. 试说明BF = 2CD.

答案:
解:如图,延长$BA$,$CD$相交于点$E$,
则有$\angle BDC=\angle BDE = 90^{\circ}=\angle BAC$.$\because BF$平分$\angle ABC$,
$\therefore\angle CBD=\angle EBD$.$\therefore\angle BCD = \angle E$.$\therefore BC = BE$. 又$\because CE\perp BD$,
$\therefore CD = ED$.$\therefore CE = 2CD$.$\because\angle BAC=\angle BDC = 90^{\circ}$,$\angle AFB=\angle DFC$,$\therefore\angle ABF=\angle ACE$. 又$\because AB = AC$,$\angle BAF=\angle CAE$,$\therefore\triangle ABF\cong\triangle ACE(ASA)$.$\therefore BF = CE$.$\therefore BF = 2CD$.
解:如图,延长$BA$,$CD$相交于点$E$,
则有$\angle BDC=\angle BDE = 90^{\circ}=\angle BAC$.$\because BF$平分$\angle ABC$,
$\therefore\angle CBD=\angle EBD$.$\therefore\angle BCD = \angle E$.$\therefore BC = BE$. 又$\because CE\perp BD$,
$\therefore CD = ED$.$\therefore CE = 2CD$.$\because\angle BAC=\angle BDC = 90^{\circ}$,$\angle AFB=\angle DFC$,$\therefore\angle ABF=\angle ACE$. 又$\because AB = AC$,$\angle BAF=\angle CAE$,$\therefore\triangle ABF\cong\triangle ACE(ASA)$.$\therefore BF = CE$.$\therefore BF = 2CD$.
查看更多完整答案,请扫码查看