第51页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
8. 如图,在$\triangle ABC$中,点D是BC上一点,且$BD = DA = AC$. 把边AB绕着点A顺时针旋转一定角度得到$\angle BAE$,连接DE,交AB于点F.
(1)若$\angle B = \alpha$,请用含$\alpha$的式子表示$\angle C$.
(2)若$\angle CAD = \angle BAE$,求证:DA平分$\angle CDE$.

(1)若$\angle B = \alpha$,请用含$\alpha$的式子表示$\angle C$.
(2)若$\angle CAD = \angle BAE$,求证:DA平分$\angle CDE$.
答案:
(1)解:$\because AD = BD$,$\angle B=\alpha$,$\therefore\angle BAD=\angle B=\alpha$.
$\therefore\angle ADC=\angle B+\angle BAD = 2\alpha$.
$\because AD = AC$,$\therefore\angle C=\angle ADC = 2\alpha$.
(2)证明:$\because\angle CAD=\angle BAE$,$\therefore\angle CAB=\angle DAE$.
在$\triangle ABC$和$\triangle AED$中,$\begin{cases}AC = AD,\\\angle CAB=\angle DAE,\\AB = AE,\end{cases}$
$\therefore\triangle ABC\cong\triangle AED(SAS)$.$\therefore\angle C=\angle ADE$.
$\because\angle C=\angle ADC$,$\therefore\angle ADE=\angle ADC$.
$\therefore DA$平分$\angle CDE$.
(1)解:$\because AD = BD$,$\angle B=\alpha$,$\therefore\angle BAD=\angle B=\alpha$.
$\therefore\angle ADC=\angle B+\angle BAD = 2\alpha$.
$\because AD = AC$,$\therefore\angle C=\angle ADC = 2\alpha$.
(2)证明:$\because\angle CAD=\angle BAE$,$\therefore\angle CAB=\angle DAE$.
在$\triangle ABC$和$\triangle AED$中,$\begin{cases}AC = AD,\\\angle CAB=\angle DAE,\\AB = AE,\end{cases}$
$\therefore\triangle ABC\cong\triangle AED(SAS)$.$\therefore\angle C=\angle ADE$.
$\because\angle C=\angle ADC$,$\therefore\angle ADE=\angle ADC$.
$\therefore DA$平分$\angle CDE$.
9. 如图,已知$AC\perp BC$,垂足为C,$AC = 4$,$BC = 3\sqrt{3}$,将线段AC绕点A按逆时针方向旋转$60^{\circ}$,得到线段AD,连接DC,DB.
(1)线段$DC =$______.
(2)求线段DB的长度.

(1)线段$DC =$______.
(2)求线段DB的长度.
答案:
解:
(1)4
(2)如图,过点$D$作$DE\perp BC$于点$E$. 由旋转的性质,得$\angle A = 60^{\circ}$,$AD = AC$.$\therefore\triangle ACD$是等边三角形.
$\therefore\angle ACD = 60^{\circ}$. 又$\because AC\perp BC$,
$\therefore\angle DCE=\angle ACB-\angle ACD = 30^{\circ}$.
$\therefore$在$Rt\triangle CDE$中,$DE=\frac{1}{2}DC = 2$.
$\therefore CE=\sqrt{DC^{2}-DE^{2}}=2\sqrt{3}$.
$\therefore BE = BC - CE = 3\sqrt{3}-2\sqrt{3}=\sqrt{3}$.
$\therefore$在$Rt\triangle BDE$中,$DB=\sqrt{DE^{2}+BE^{2}}=\sqrt{7}$.
解:
(1)4
(2)如图,过点$D$作$DE\perp BC$于点$E$. 由旋转的性质,得$\angle A = 60^{\circ}$,$AD = AC$.$\therefore\triangle ACD$是等边三角形.
$\therefore\angle ACD = 60^{\circ}$. 又$\because AC\perp BC$,
$\therefore\angle DCE=\angle ACB-\angle ACD = 30^{\circ}$.
$\therefore$在$Rt\triangle CDE$中,$DE=\frac{1}{2}DC = 2$.
$\therefore CE=\sqrt{DC^{2}-DE^{2}}=2\sqrt{3}$.
$\therefore BE = BC - CE = 3\sqrt{3}-2\sqrt{3}=\sqrt{3}$.
$\therefore$在$Rt\triangle BDE$中,$DB=\sqrt{DE^{2}+BE^{2}}=\sqrt{7}$.
10. 已知$\triangle ABC$与$\triangle DEC$是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由.
(2)如图②所示,连接DB,将线段DB绕点D顺时针旋转$90^{\circ}$到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.

(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由.
(2)如图②所示,连接DB,将线段DB绕点D顺时针旋转$90^{\circ}$到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
答案:
解:
(1)$AE = DB$,$AE\perp DB$. 理由如下:如图①,延长$DB$交$AE$于点$H$.$\because\triangle ABC$与$\triangle DEC$是等腰直角三角形,$\therefore AC = BC$,$\angle ACE=\angle BCD = 90^{\circ}$,$CE = CD$.
$\therefore\triangle ACE\cong\triangle BCD$.$\therefore AE = DB$,$\angle AEC=\angle BDC$.
又$\because\angle EBH=\angle CBD$,$\therefore\angle BHE=\angle BCD = 90^{\circ}$.
$\therefore AE\perp DB$.
(2)$DE = AF$,$DE\perp AF$. 理由如下:如图②,设$DE$与$AF$交于点$N$.$\because\triangle ABC$与$\triangle DEC$是等腰直角三角形,$\therefore AC = BC$,$\angle ACE=\angle BCD = 90^{\circ}$,$\angle E=\angle EDC = 45^{\circ}$,$CE = CD$.$\therefore CE - BC = CD - AC$,即$BE = DA$.
由旋转的性质,得$DB = DF$,$\angle BDF = 90^{\circ}$.$\because\angle EBD=\angle C+\angle BDC = 90^{\circ}+\angle BDC$,$\angle ADF=\angle BDF+\angle BDC = 90^{\circ}+\angle BDC$,$\therefore\angle EBD=\angle ADF$.$\therefore\triangle EBD\cong\triangle ADF$.
$\therefore DE = AF$,$\angle E=\angle FAD$. 又$\because\angle E=\angle EDC = 45^{\circ}$,
$\therefore\angle FAD = 45^{\circ}$.$\therefore\angle AND = 90^{\circ}$,即$DE\perp AF$.
(图①、图②分别对应 10 题中
(1)、
(2)的图形)
解:
(1)$AE = DB$,$AE\perp DB$. 理由如下:如图①,延长$DB$交$AE$于点$H$.$\because\triangle ABC$与$\triangle DEC$是等腰直角三角形,$\therefore AC = BC$,$\angle ACE=\angle BCD = 90^{\circ}$,$CE = CD$.
$\therefore\triangle ACE\cong\triangle BCD$.$\therefore AE = DB$,$\angle AEC=\angle BDC$.
又$\because\angle EBH=\angle CBD$,$\therefore\angle BHE=\angle BCD = 90^{\circ}$.
$\therefore AE\perp DB$.
(2)$DE = AF$,$DE\perp AF$. 理由如下:如图②,设$DE$与$AF$交于点$N$.$\because\triangle ABC$与$\triangle DEC$是等腰直角三角形,$\therefore AC = BC$,$\angle ACE=\angle BCD = 90^{\circ}$,$\angle E=\angle EDC = 45^{\circ}$,$CE = CD$.$\therefore CE - BC = CD - AC$,即$BE = DA$.
由旋转的性质,得$DB = DF$,$\angle BDF = 90^{\circ}$.$\because\angle EBD=\angle C+\angle BDC = 90^{\circ}+\angle BDC$,$\angle ADF=\angle BDF+\angle BDC = 90^{\circ}+\angle BDC$,$\therefore\angle EBD=\angle ADF$.$\therefore\triangle EBD\cong\triangle ADF$.
$\therefore DE = AF$,$\angle E=\angle FAD$. 又$\because\angle E=\angle EDC = 45^{\circ}$,
$\therefore\angle FAD = 45^{\circ}$.$\therefore\angle AND = 90^{\circ}$,即$DE\perp AF$.
(图①、图②分别对应 10 题中
(1)、
(2)的图形)
查看更多完整答案,请扫码查看