2025年一线调研学业测评八年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一线调研学业测评八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一线调研学业测评八年级数学下册北师大版》

9. (阜新中考改编)如图,在△ABC中,∠B = 90°,AB = BC = 4,将△ABC绕点A逆时针旋转60°,得到△ADE,则点D到BC的距离是( )
第9题图
A. √3
B. 2
C. 2√2
D. 2√3
答案: B
10. 如图,已知△ABC中,∠CAB = 20°,∠ABC = 30°,将△ABC绕点A逆时针旋转50°得到△AB′C′,以下结论中错误的是( )
第10题图
A. C′B′⊥BB′
B. BC = B′C′
C. AC//C′B′
D. ∠ABB′ = ∠ACC′
答案: A
11. 如图,在△ABC中,∠ACB = 90°,AC = 4,BC = 3. 将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,连接CE,则△CBE的面积为____.
答案: $\frac{6}{5}$
12. 如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点____,旋转了____°.
(2)如果AB = 7,AC = 4,求中线AD长的取值范围.
答案: 解:
(1)D 180
(2)$\because$将$\triangle ACD$旋转后能与$\triangle EBD$重合,$\therefore BE = AC = 4$,$DE = AD$. 在$\triangle ABE$中,由三角形的三边关系得,$AB - BE\lt AE\lt AB + BE$,$\because AB = 7$,$\therefore 3\lt AE\lt11$,即$3\lt2AD\lt11$.$\therefore 1.5\lt AD\lt5.5$,即中线$AD$长的取值范围是$1.5\lt AD\lt5.5$.
13. 如图,△ABC中,∠ABC = 90°,BA = BC = 2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,求BD²的值.
答案:
解:如图,连接$AD$,设$AC$与$BD$交于点$O$,$\because$将$\triangle ABC$绕点$C$逆时针旋转$60^{\circ}$得到$\triangle DEC$,$\therefore CA = CD$,$\angle ACD = 60^{\circ}$.$\therefore\triangle ACD$为等边三角形.$\therefore AD = CD$,$\angle DAC=\angle DCA=\angle ADC = 60^{\circ}$.
$\because\angle ABC = 90^{\circ}$,$AB = BC = 2$,$\therefore AC = CD = 2\sqrt{2}$.
$\because AB = BC$,$CD = AD$,$\therefore BD$垂直平分$AC$.$\therefore BO = CO=\frac{1}{2}AC=\sqrt{2}$,$OD=\sqrt{CD^{2}-CO^{2}}=\sqrt{6}$.$\therefore BD=\sqrt{2}+\sqrt{6}$.$\therefore BD^{2}=(\sqrt{2}+\sqrt{6})^{2}=8 + 4\sqrt{3}$.
E7
14. (绵阳中考)如图,点M是∠ABC的边BA上的动点,BC = 6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.
(1)作MH⊥BC,垂足H在线段BC上,当∠CMH = ∠B时,判断点N是否在直线AB上,并说明理由.
(2)若∠ABC = 30°,NC//AB,求以MC,MN为邻边的正方形的面积S.
答案:
解:
(1)结论:点$N$在直线$AB$上,理由如下:
$\because\angle CMH=\angle B$,$\angle CMH+\angle MCH = 90^{\circ}$,$\therefore\angle B+\angle MCH = 90^{\circ}$.$\therefore\angle BMC = 90^{\circ}$,即$CM\perp AB$.$\therefore$线段$CM$绕点$M$逆时针旋转$90^{\circ}$落在直线$BA$上,即点$N$在直线$AB$上.
(2)作$CD\perp AB$于点$D$,
$\because MC = MN$,$\angle CMN = 90^{\circ}$,
$\therefore\angle MCN = 45^{\circ}$.$\because NC// AB$,$\therefore\angle BMC = 45^{\circ}$.$\because BC = 6$,$\angle B = 30^{\circ}$,$\therefore CD = 3$,$MC=\sqrt{2}CD = 3\sqrt{2}$.$\therefore S = MC^{2}=18$,即以$MC$,$MN$为邻边的正方形的面积$S = 18$.

查看更多完整答案,请扫码查看

关闭