第23页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
11. (苏州中考)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”. 若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为_____.
答案:
6
12. (绍兴中考)如图,在△ABC中,AB = AC,∠B = 70°,以点C为圆心、CA长为半径作弧,交直线BC于点P,连接AP,则∠BAP的度数是___________.

答案:
15°或 75°
13. (深圳中考)如图,已知∠BAC = 60°,AD是角平分线,且AD = 10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF的周长为__________.

答案:
$5 + 5\sqrt{3}$
14. (长沙中考)如图,在△ABC中,AD⊥BC,垂足为点D,BD = CD,延长BC至点E,使得CE = CA,连接AE.
(1)求证:∠B = ∠ACB.
(2)若AB = 5,AD = 4,求△ABE的周长和面积.

(1)求证:∠B = ∠ACB.
(2)若AB = 5,AD = 4,求△ABE的周长和面积.
答案:
(1)证明:$\because AD\perp BC,BD = CD$,
$\therefore AD$是线段$BC$的垂直平分线.
$\therefore AB = AC.\therefore\angle B=\angle ACB$.
(2)解:由
(1)得$CE = AC = AB = 5$.
在$Rt\triangle ADB$中,$BD=\sqrt{AB^{2}-AD^{2}}=\sqrt{5^{2}-4^{2}} = 3$,
$\therefore CD = BD = 3.\therefore BE = 2BD + CE = 2\times3 + 5 = 11$. 在
$Rt\triangle ADE$中,$AE=\sqrt{AD^{2}+DE^{2}}=\sqrt{4^{2}+8^{2}} = 4\sqrt{5}$.
$\therefore C_{\triangle ABE}=AB + BE + AE = 16 + 4\sqrt{5},S_{\triangle ABE}=\frac{1}{2}BE\cdot AD=\frac{1}{2}\times11\times4 = 22$.
(1)证明:$\because AD\perp BC,BD = CD$,
$\therefore AD$是线段$BC$的垂直平分线.
$\therefore AB = AC.\therefore\angle B=\angle ACB$.
(2)解:由
(1)得$CE = AC = AB = 5$.
在$Rt\triangle ADB$中,$BD=\sqrt{AB^{2}-AD^{2}}=\sqrt{5^{2}-4^{2}} = 3$,
$\therefore CD = BD = 3.\therefore BE = 2BD + CE = 2\times3 + 5 = 11$. 在
$Rt\triangle ADE$中,$AE=\sqrt{AD^{2}+DE^{2}}=\sqrt{4^{2}+8^{2}} = 4\sqrt{5}$.
$\therefore C_{\triangle ABE}=AB + BE + AE = 16 + 4\sqrt{5},S_{\triangle ABE}=\frac{1}{2}BE\cdot AD=\frac{1}{2}\times11\times4 = 22$.
15. 如图,在△ABC中,AB = AC,AD⊥BC于点D.
(1)若∠C = 42°,求∠BAD的度数.
(2)若点E在边AB上,EF//AC交AD的延长线于点F. 求证:AE = FE.

(1)若∠C = 42°,求∠BAD的度数.
(2)若点E在边AB上,EF//AC交AD的延长线于点F. 求证:AE = FE.
答案:
(1)解:$\because AB = AC,AD\perp BC,\therefore\angle BAD=\angle CAD$,$\angle ADC = 90^{\circ}$. 又$\because\angle C = 42^{\circ}$,$\therefore\angle BAD=\angle CAD = 90^{\circ}-42^{\circ}=48^{\circ}$.
(2)证明:$\because AB = AC,AD\perp BC,\therefore\angle BAD=\angle CAD$.
$\because EF// AC,\therefore\angle F=\angle CAD.\therefore\angle BAD=\angle F$.
$\therefore AE = FE$.
(1)解:$\because AB = AC,AD\perp BC,\therefore\angle BAD=\angle CAD$,$\angle ADC = 90^{\circ}$. 又$\because\angle C = 42^{\circ}$,$\therefore\angle BAD=\angle CAD = 90^{\circ}-42^{\circ}=48^{\circ}$.
(2)证明:$\because AB = AC,AD\perp BC,\therefore\angle BAD=\angle CAD$.
$\because EF// AC,\therefore\angle F=\angle CAD.\therefore\angle BAD=\angle F$.
$\therefore AE = FE$.
16. 如图,AD是△ABC的高,AD的垂直平分线分别交AB,AD,AC于点E,H,F.
(1)求证:∠B = $\frac{1}{2}$∠AED.
(2)若DE = 1,求AB的长.

(1)求证:∠B = $\frac{1}{2}$∠AED.
(2)若DE = 1,求AB的长.
答案:
(1)证明:$\because EF$是$AD$的垂直平分线,$\therefore EA = ED$.
$\because EH\perp AD,\therefore\angle AEH=\angle DEH.\because EF\perp AD,BC\perp AD.\therefore EF// BC.\therefore\angle AEH=\angle B.\therefore\angle B=\frac{1}{2}\angle AED$.
(2)解:由
(1)得$EF// BC,\therefore\angle HED=\angle EDB$.
$\because\angle AEH=\angle HED,\angle AEH=\angle B,\therefore\angle B=\angle EDB$.
$\therefore BE = DE = AE.\therefore AB = 2BE = 2DE = 2\times1 = 2$.
(1)证明:$\because EF$是$AD$的垂直平分线,$\therefore EA = ED$.
$\because EH\perp AD,\therefore\angle AEH=\angle DEH.\because EF\perp AD,BC\perp AD.\therefore EF// BC.\therefore\angle AEH=\angle B.\therefore\angle B=\frac{1}{2}\angle AED$.
(2)解:由
(1)得$EF// BC,\therefore\angle HED=\angle EDB$.
$\because\angle AEH=\angle HED,\angle AEH=\angle B,\therefore\angle B=\angle EDB$.
$\therefore BE = DE = AE.\therefore AB = 2BE = 2DE = 2\times1 = 2$.
17. (杭州中考)如图,在△ABC中,∠ABC的平分线BD交AC于点D,AE⊥BC于点E. 已知∠ABC = 60°,∠C = 45°.
(1)求证:AB = BD.
(2)若AE = 3,则△ABC的面积为________.

(1)求证:AB = BD.
(2)若AE = 3,则△ABC的面积为________.
答案:
(1)证明:$\because BD$平分$\angle ABC,\angle ABC = 60^{\circ},\therefore\angle DBC=\frac{1}{2}\angle ABC = 30^{\circ}$. $\because\angle C = 45^{\circ},\therefore\angle ADB=\angle DBC+\angle C = 75^{\circ}$. $\angle BAC = 180^{\circ}-\angle ABC-\angle C = 75^{\circ}$.
$\therefore\angle BAC=\angle ADB.\therefore AB = BD$.
(2)$\frac{9 + 3\sqrt{3}}{2}$ 提示:在$Rt\triangle ABE$中,$\angle ABC = 60^{\circ}$,
$\therefore\angle BAE = 30^{\circ}.\therefore AB = 2BE$. 又$\because AE = 3,\therefore BE=\sqrt{3}$.
在$Rt\triangle AEC$中,$\angle C = 45^{\circ},AE = 3,\therefore EC = 3.\therefore BC = 3+\sqrt{3}.\therefore S_{\triangle ABC}=\frac{1}{2}BC\cdot AE=\frac{9 + 3\sqrt{3}}{2}$.
(1)证明:$\because BD$平分$\angle ABC,\angle ABC = 60^{\circ},\therefore\angle DBC=\frac{1}{2}\angle ABC = 30^{\circ}$. $\because\angle C = 45^{\circ},\therefore\angle ADB=\angle DBC+\angle C = 75^{\circ}$. $\angle BAC = 180^{\circ}-\angle ABC-\angle C = 75^{\circ}$.
$\therefore\angle BAC=\angle ADB.\therefore AB = BD$.
(2)$\frac{9 + 3\sqrt{3}}{2}$ 提示:在$Rt\triangle ABE$中,$\angle ABC = 60^{\circ}$,
$\therefore\angle BAE = 30^{\circ}.\therefore AB = 2BE$. 又$\because AE = 3,\therefore BE=\sqrt{3}$.
在$Rt\triangle AEC$中,$\angle C = 45^{\circ},AE = 3,\therefore EC = 3.\therefore BC = 3+\sqrt{3}.\therefore S_{\triangle ABC}=\frac{1}{2}BC\cdot AE=\frac{9 + 3\sqrt{3}}{2}$.
查看更多完整答案,请扫码查看