2025年新课程示径学案作业设计七年级数学下册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程示径学案作业设计七年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课程示径学案作业设计七年级数学下册苏科版》

同质训练 用加减法消元法解下列方程组.
(5)$\begin{cases} 5x - 2y = 4 \\ 2x - 3y = -5 \end{cases}$;
(6)$\begin{cases} 2x + 3y = 12 \\ 3x - 4y = 1 \end{cases}$;
(7)$\begin{cases} 3x - y = -4 \\ x - 2y = -3 \end{cases}$;
(8)$\begin{cases} 5x - 2y = 1 \\ 3x + 4y = 11 \end{cases}$
答案: (5)①×3 - ②×2得15x - 6y - (4x - 6y)=12 + 10,11x=22,x=2,代入①得y=3,解为$\begin{cases} x=2 \\ y=3 \end{cases}$
(6)①×4 + ②×3得8x + 12y + 9x - 12y=48 + 3,17x=51,x=3,代入①得y=2,解为$\begin{cases} x=3 \\ y=2 \end{cases}$
(7)①×2 - ②得6x - 2y - x + 2y=-8 + 3,5x=-5,x=-1,代入①得y=1,解为$\begin{cases} x=-1 \\ y=1 \end{cases}$
(8)①×2 + ②得10x - 4y + 3x + 4y=2 + 11,13x=13,x=1,代入①得y=2,解为$\begin{cases} x=1 \\ y=2 \end{cases}$
例 已知关于x,y的二元一次方程组$\begin{cases} 2x + y = 6m \\ 3x - 2y = 2m \end{cases}$的解满足二元一次方程$\frac{x}{3} - \frac{y}{5} = 4$,求m的值.
答案: 解方程组$\begin{cases} 2x + y = 6m \\ 3x - 2y = 2m \end{cases}$,①×2 + ②得7x=14m,x=2m,y=2m.代入$\frac{x}{3} - \frac{y}{5}=4$得$\frac{2m}{3} - \frac{2m}{5}=4$,$\frac{10m - 6m}{15}=4$,4m=60,m=15.
同质训练1 若关于x,y的二元一次方程组$\begin{cases} x + y = 5k \\ x - y = 9k \end{cases}$的解也是二元一次方程2x + 3y = 6的解,求k的值.
答案: 解方程组$\begin{cases} x + y =5k \\ x - y=9k \end{cases}$,两式相加2x=14k,x=7k,y=-2k.代入2x + 3y=6得14k - 6k=6,8k=6,k=$\frac{3}{4}$.
同质训练2 用代入消元法或加减消元法解下列方程组.
(1)$\begin{cases} 2x + 5y = -9 \\ 4x - 5y = -3 \end{cases}$;
(2)$\begin{cases} 2x + y = 4 \\ 4x - 3y = 2 \end{cases}$
答案: (1)两式相加6x=-12,x=-2,代入2x + 5y=-9得y=-1,解为$\begin{cases} x=-2 \\ y=-1 \end{cases}$
(2)由2x + y=4得y=4 - 2x,代入4x - 3y=2得4x - 3(4 - 2x)=2,10x=14,x=$\frac{7}{5}$,y=$\frac{6}{5}$,解为$\begin{cases} x=\frac{7}{5} \\ y=\frac{6}{5} \end{cases}$

查看更多完整答案,请扫码查看

关闭