第47页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
5. (中考·眉山节选)在平面直角坐标系中,已知抛物线y = ax² + bx + c与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图,当$\frac{PD}{DB}$的值最大时,求点P的坐标及$\frac{PD}{DB}$的最大值.

(1)求抛物线的解析式;
(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图,当$\frac{PD}{DB}$的值最大时,求点P的坐标及$\frac{PD}{DB}$的最大值.
答案:
解:
(1)$\because$抛物线$y = ax^{2}+bx + c$与$x$轴交于$A(-3,0)$,$B(1,0)$两点,与$y$轴交于点$C(0,3)$,$\therefore\begin{cases}9a - 3b + c = 0,\\a + b + c = 0,\\c = 3,\end{cases}$解得$\begin{cases}a = -1,\\b = -2,\\c = 3.\end{cases}$$\therefore$抛物线的解析式为$y = -x^{2}-2x + 3$.
(2)设直线$AC$的解析式为$y = kx + n$,则$\begin{cases}-3k + n = 0,\\n = 3,\end{cases}$解得$\begin{cases}k = 1,\\n = 3.\end{cases}$$\therefore$直线$AC$的解析式为$y = x + 3$. 过点$P$作$PE// x$轴交直线$AC$于点$E$,设$P(t,-t^{2}-2t + 3)$,则$E(-t^{2}-2t,-t^{2}-2t + 3)$,$\therefore PE = -t^{2}-2t - t = -t^{2}-3t$.$\because A(-3,0)$,$B(1,0)$,$\therefore AB = 1 - (-3)=4$.$\because PE// x$轴,$\therefore \triangle EPD\sim\triangle ABD$.$\therefore \frac{PD}{DB}=\frac{PE}{AB}$.$\therefore \frac{PD}{DB}=\frac{-t^{2}-3t}{4}=-\frac{1}{4}(t+\frac{3}{2})^{2}+\frac{9}{16}$.$\because -\frac{1}{4}<0$,当$t = -\frac{3}{2}$时,$\frac{PD}{DB}$的值最大,最大值为$\frac{9}{16}$,此时点$P$的坐标为$(-\frac{3}{2},\frac{15}{4})$.
(1)$\because$抛物线$y = ax^{2}+bx + c$与$x$轴交于$A(-3,0)$,$B(1,0)$两点,与$y$轴交于点$C(0,3)$,$\therefore\begin{cases}9a - 3b + c = 0,\\a + b + c = 0,\\c = 3,\end{cases}$解得$\begin{cases}a = -1,\\b = -2,\\c = 3.\end{cases}$$\therefore$抛物线的解析式为$y = -x^{2}-2x + 3$.
(2)设直线$AC$的解析式为$y = kx + n$,则$\begin{cases}-3k + n = 0,\\n = 3,\end{cases}$解得$\begin{cases}k = 1,\\n = 3.\end{cases}$$\therefore$直线$AC$的解析式为$y = x + 3$. 过点$P$作$PE// x$轴交直线$AC$于点$E$,设$P(t,-t^{2}-2t + 3)$,则$E(-t^{2}-2t,-t^{2}-2t + 3)$,$\therefore PE = -t^{2}-2t - t = -t^{2}-3t$.$\because A(-3,0)$,$B(1,0)$,$\therefore AB = 1 - (-3)=4$.$\because PE// x$轴,$\therefore \triangle EPD\sim\triangle ABD$.$\therefore \frac{PD}{DB}=\frac{PE}{AB}$.$\therefore \frac{PD}{DB}=\frac{-t^{2}-3t}{4}=-\frac{1}{4}(t+\frac{3}{2})^{2}+\frac{9}{16}$.$\because -\frac{1}{4}<0$,当$t = -\frac{3}{2}$时,$\frac{PD}{DB}$的值最大,最大值为$\frac{9}{16}$,此时点$P$的坐标为$(-\frac{3}{2},\frac{15}{4})$.
6. (2024·内江)如图,在平面直角坐标系中,一次函数y = -2x + 6的图象与x轴交于点A,与y轴交于点B,抛物线y = -x² + bx + c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交AB于点E.
(1)这条抛物线所对应的函数解析式是____;
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由.

(1)这条抛物线所对应的函数解析式是____;
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由.
答案:
(1)$y = -x^{2}+x + 6$ 解:
(2)存在点$D$,使得$\triangle BDE$和$\triangle ACE$相似,设点$D(t,-t^{2}+t + 6)$,则$E(t,-2t + 6)$,$C(t,0)$,$\therefore EC = -2t + 6$,$AC = 3 - t$,$DE = -t^{2}+3t$,$\because \triangle BDE$和$\triangle ACE$相似,$\angle BED = \angle AEC$,$\therefore \triangle ACE\sim\triangle BDE$或$\triangle ACE\sim\triangle DBE$,①当$\triangle ACE\sim\triangle BDE$时,$\angle BDE = \angle ACE = 90^{\circ}$,$\therefore BD\perp AC$,$\therefore D$点纵坐标为$6$.$\therefore -t^{2}+t + 6 = 6$,解得$t = 0$或$t = 1$.$\therefore D(1,6)$;②当$\triangle ACE\sim\triangle DBE$时,$\angle BDE = \angle CAE$. 过$B$作$BH\perp DC$于$H$,则$\angle BHD = 90^{\circ}$,$H(t,6)$,$BH = t$,$DH = -t^{2}+t$,$\because \angle BDE = \angle CAE$,$\angle BHD = \angle AOB$,$\therefore \triangle BDH\sim\triangle BAO$.$\therefore \frac{BH}{BO}=\frac{DH}{OA}$,即$\frac{t}{6}=\frac{-t^{2}+t}{3}$. 解得$t_{1}=0$(舍去),$t_{2}=\frac{1}{2}$.$\therefore D(\frac{1}{2},\frac{25}{4})$. 综上所述,点$D$的坐标是$(1,6)$或$(\frac{1}{2},\frac{25}{4})$


.
(1)$y = -x^{2}+x + 6$ 解:
(2)存在点$D$,使得$\triangle BDE$和$\triangle ACE$相似,设点$D(t,-t^{2}+t + 6)$,则$E(t,-2t + 6)$,$C(t,0)$,$\therefore EC = -2t + 6$,$AC = 3 - t$,$DE = -t^{2}+3t$,$\because \triangle BDE$和$\triangle ACE$相似,$\angle BED = \angle AEC$,$\therefore \triangle ACE\sim\triangle BDE$或$\triangle ACE\sim\triangle DBE$,①当$\triangle ACE\sim\triangle BDE$时,$\angle BDE = \angle ACE = 90^{\circ}$,$\therefore BD\perp AC$,$\therefore D$点纵坐标为$6$.$\therefore -t^{2}+t + 6 = 6$,解得$t = 0$或$t = 1$.$\therefore D(1,6)$;②当$\triangle ACE\sim\triangle DBE$时,$\angle BDE = \angle CAE$. 过$B$作$BH\perp DC$于$H$,则$\angle BHD = 90^{\circ}$,$H(t,6)$,$BH = t$,$DH = -t^{2}+t$,$\because \angle BDE = \angle CAE$,$\angle BHD = \angle AOB$,$\therefore \triangle BDH\sim\triangle BAO$.$\therefore \frac{BH}{BO}=\frac{DH}{OA}$,即$\frac{t}{6}=\frac{-t^{2}+t}{3}$. 解得$t_{1}=0$(舍去),$t_{2}=\frac{1}{2}$.$\therefore D(\frac{1}{2},\frac{25}{4})$. 综上所述,点$D$的坐标是$(1,6)$或$(\frac{1}{2},\frac{25}{4})$
查看更多完整答案,请扫码查看