2025年名师学案九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师学案九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师学案九年级数学下册人教版》

1. (2024·东莞模拟)如图,在□ABCD中,E是AD上一点,∠EAB = ∠EBC.
求证:BE² = AB·EC.
答案: 证明:
∵□ABCD,
∴AB//CD.
∴∠EBA = ∠BEC. 又
∵∠EAB = ∠EBC,
∴△ABE∽△BEC.
∴$\frac{AB}{BE}=\frac{BE}{EC}$.
∴$BE^{2}=AB\cdot EC$.
2. 如图,在四边形ABCD中,AD//BC,AB = AC,点E,F分别在AB,BC上,且∠EFB = ∠D.
(1)求证:EF·AC = CD·BE;
(2)若AB = 20,AD = 5,BF = 4,求EB的长.
BF
答案:
(1)证明:
∵AB = AC,
∴∠B = ∠ACB.
∵AD//BC,
∴∠DAC = ∠ACB,
∴∠DAC = ∠B. 又
∵∠EFB = ∠D,
∴△EBF∽△CAD,
∴$\frac{FE}{CD}=\frac{EB}{CA}$,即 EF·AC = CD·BE;
(2)解:
∵AB = AC,AB = 20,
∴AC = 20,由
(1)知△EBF∽△CAD,
∴$\frac{EB}{AC}=\frac{BF}{AD}$,即$\frac{EB}{20}=\frac{4}{5}$,解得 EB = 16.
3. (2024·上海改编)如图,在矩形ABCD中,E为边CD上一点,且AE⊥BD.
求证:AD² = DE·DC.
答案: 证明:
∵矩形 ABCD,
∴∠BAD = ∠ADE = 90°,AB = DC.
∴∠ABD + ∠ADB = 90°.
∵AE⊥BD,
∴∠DAE + ∠ADB = 90°.
∴∠ABD = ∠DAE.
∵∠BAD = ∠ADE = 90°,
∴△ADE∽△BAD.
∴$\frac{AD}{BA}=\frac{DE}{AD}$.
∴$AD^{2}=DE\cdot BA$.
∵AB = DC,
∴$AD^{2}=DE\cdot DC$.
4. 如图,在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PE⊥EC.
求证:AE·AB = DE·AP.
答案: 证明:
∵矩形 ABCD,
∴AB = CD,∠ADC = 90°.
∵AE⊥BD,PE⊥CE,
∴∠AED = 90° = ∠AEP + ∠PED,∠PEC = 90° = ∠PED + ∠DEC.
∴∠AEP = ∠DEC. 又
∵∠EAP + ∠ADE = 90°,∠ADE + ∠EDC = 90°,
∴∠EAP = ∠EDC.
∴△AEP∽△DEC.
∴$\frac{AE}{DE}=\frac{AP}{DC}$. 又 AB = CD,
∴AE·AB = DE·AP.

查看更多完整答案,请扫码查看

关闭