2025年千里马单元测试卷八年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年千里马单元测试卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 下列二次根式中,与$\sqrt{2}$是可合并的二次根式的是 ( )
A. $\sqrt{4}$
B. $\sqrt{6}$
C. $\sqrt{8}$
D. $\sqrt{12}$
A. $\sqrt{4}$
B. $\sqrt{6}$
C. $\sqrt{8}$
D. $\sqrt{12}$
答案:
C
2. 下列各式计算正确的是 ( )
A. $3\sqrt{3}-2\sqrt{3}=1$
B. $\sqrt{(-3)^{2}}=-3$
C. $\sqrt{3}+\sqrt{2}=\sqrt{5}$
D. $(\sqrt{5}+\sqrt{3})\times(\sqrt{5}-\sqrt{3})=2$
A. $3\sqrt{3}-2\sqrt{3}=1$
B. $\sqrt{(-3)^{2}}=-3$
C. $\sqrt{3}+\sqrt{2}=\sqrt{5}$
D. $(\sqrt{5}+\sqrt{3})\times(\sqrt{5}-\sqrt{3})=2$
答案:
D
3. 若要在$(5\sqrt{2}-\sqrt{2})\square\sqrt{2}$的“$\square$”中填上一个运算符号,使计算结果最大,则这个运算符号应该填 ( )
A. +
B. -
C. ×
D. ÷
A. +
B. -
C. ×
D. ÷
答案:
C
4. 计算:$2\sqrt{8}-3\sqrt{8}+5\sqrt{8}=$_______.
答案:
$8\sqrt{2}$
5. 已知长方形的长和宽分别为$\sqrt{18}$ cm,$\sqrt{8}$ cm,则它的周长是_______.
答案:
$10\sqrt{2}\text{ cm}$
6. (1)(兰州中考)计算:$\sqrt{6}\times\sqrt{3}-\sqrt{8}$;
答案:
解:
(1)原式$=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$.
(1)原式$=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$.
(2)(金昌中考)计算:$\sqrt{27}\div\frac{\sqrt{3}}{2}\times2\sqrt{2}-6\sqrt{2}$.
答案:
(2)原式$=3\sqrt{3}\times\frac{2}{\sqrt{3}}\times2\sqrt{2}-6\sqrt{2}=12\sqrt{2}-6\sqrt{2}=6\sqrt{2}$.
(2)原式$=3\sqrt{3}\times\frac{2}{\sqrt{3}}\times2\sqrt{2}-6\sqrt{2}=12\sqrt{2}-6\sqrt{2}=6\sqrt{2}$.
7. 已知$x = \sqrt{7}+\sqrt{5}$,$y = \sqrt{7}-\sqrt{5}$. 求下列各式的值.
(1)$xy$;
(2)$x^{2}-xy + y^{2}$.
(1)$xy$;
(2)$x^{2}-xy + y^{2}$.
答案:
解:
(1)$\because x = \sqrt{7}+\sqrt{5},y = \sqrt{7}-\sqrt{5}$,
$\therefore xy = (\sqrt{7}+\sqrt{5})\times(\sqrt{7}-\sqrt{5})$
$= (\sqrt{7})^{2}-(\sqrt{5})^{2}=7 - 5 = 2$.
(2)$\because x = \sqrt{7}+\sqrt{5},y = \sqrt{7}-\sqrt{5}$,
$\therefore x + y = (\sqrt{7}+\sqrt{5})+(\sqrt{7}-\sqrt{5}) = 2\sqrt{7}$.
$\because xy = 2$,
$\therefore x^{2}-xy + y^{2}=(x + y)^{2}-3xy=(2\sqrt{7})^{2}-3\times2 = 28 - 6 = 22$.
(1)$\because x = \sqrt{7}+\sqrt{5},y = \sqrt{7}-\sqrt{5}$,
$\therefore xy = (\sqrt{7}+\sqrt{5})\times(\sqrt{7}-\sqrt{5})$
$= (\sqrt{7})^{2}-(\sqrt{5})^{2}=7 - 5 = 2$.
(2)$\because x = \sqrt{7}+\sqrt{5},y = \sqrt{7}-\sqrt{5}$,
$\therefore x + y = (\sqrt{7}+\sqrt{5})+(\sqrt{7}-\sqrt{5}) = 2\sqrt{7}$.
$\because xy = 2$,
$\therefore x^{2}-xy + y^{2}=(x + y)^{2}-3xy=(2\sqrt{7})^{2}-3\times2 = 28 - 6 = 22$.
8. 教师节要到了,小明做了两张大小不同的正方形壁画准备送给老师,其中一张的面积为$800$ cm²,另一张的面积为$450$ cm²,他想,如果再用金色彩带把壁画的边镶上会更漂亮. 他现在有$1.2$ m长的金色彩带,请你帮他算一算,他的金色彩带够用吗?
答案:
解:$\because$两张正方形壁画的面积分别是$800\text{ cm}^{2},450\text{ cm}^{2}$,
$\therefore$两张正方形壁画的边长分别是$\sqrt{800}=20\sqrt{2}\text{ cm}$,$\sqrt{450}=15\sqrt{2}\text{ cm}$,
$\therefore$需用的金色彩带的长度为$4\times(20\sqrt{2}+15\sqrt{2}) = 140\sqrt{2}(\text{ cm})$.
$\because 140\sqrt{2}\text{ cm}>120\text{ cm}$,$\therefore$小明的金色彩带不够用.
$\therefore$两张正方形壁画的边长分别是$\sqrt{800}=20\sqrt{2}\text{ cm}$,$\sqrt{450}=15\sqrt{2}\text{ cm}$,
$\therefore$需用的金色彩带的长度为$4\times(20\sqrt{2}+15\sqrt{2}) = 140\sqrt{2}(\text{ cm})$.
$\because 140\sqrt{2}\text{ cm}>120\text{ cm}$,$\therefore$小明的金色彩带不够用.
查看更多完整答案,请扫码查看