2025年智慧学堂九年级数学下册华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年智慧学堂九年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年智慧学堂九年级数学下册华师大版》

9. (2023福建中考)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF//BC.
(1)求证:AO//BE;
(2)求证:AO平分∠BAC.
答案: 证明:
(1)
∵AF是⊙O的切线,
∴AF⊥OA,∠OAF = 90°,
∵CE是⊙O的直径,
∴∠CBE = 90°,
∴∠OAF = ∠CBE,
∵AF//BC,
∴∠BAF = ∠ABC,
∴∠OAF - ∠BAF = ∠CBE - ∠ABC,即∠OAB = ∠ABE,
∴AO//BE。
(2)
∵∠ABE与∠ACE都是⌢EA所对的圆周角,
∴∠ABE = ∠ACE,
∵OA = OC,
∴∠ACE = ∠OAC,
∴∠ABE = ∠OAC,由
(1)知∠OAB = ∠ABE,
∴∠OAB = ∠OAC,
∴AO平分∠BAC。
10. (甘孜州中考)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:∠CAD = ∠CAB;
(2)若$\frac{AD}{AB}$ = $\frac{2}{3}$,AC = 2$\sqrt{6}$,求CD的长.
答案:

(1)证明:连结OC,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AD⊥CD,
∴AD//OC,
∴∠CAD = ∠ACO,
∵OA = OC,OAOC
∴∠CAO = ∠ACO,
∴∠CAD = ∠CAB;
(2)解:连结BC,
∵AD/AB = 2/3,
∴设AD = 2x,AB = 3x,
∵AB是⊙O的直径,
∴∠ACB = ∠ADC = 90°,
∵∠DAC = ∠CAB,
∴△ACD∽△ABC,
∴AD/AC = AC/AB,
∴2x/(2√6) = (2√6)/(3x),
∴x = 2(负值舍去),
∴AD = 4,
∴CD = √(AC² - AD²)=2√2。
11. (2023南充中考)如图,AB与⊙O相切于点A,半径OC//AB,BC与⊙O相交于点D,连结AD.
(1)求证:∠OCA = ∠ADC;
(2)若AD = 2,tanB = $\frac{1}{3}$,求OC的长.
答案:

(1)证明:连结OA交BC于点F,
∵AB是⊙O的切线,
∴∠OAB = 90°,
∵OC//AB,
∴∠AOC = ∠OAB = 90°,
∵CO = OA,
∴∠OCA = 45°,
∴∠ADC = 1/2∠AOC = 45°,
∴∠OCA = ∠ADC;
(2)解:过点A作AE⊥BC于点E,
∵∠ADE = 45°,
∴△ADE是等腰直角三角形,
∴AE = DE = √2/2AD = √2,
∵tanB = AE/BE = 1/3,
∴BE = 3AE = 3√2,
∴AB = √(BE² + AE²)=√(18 + 2)=2√5,在Rt△ABF中,tanB = AF/AB = 1/3,
∴AF = 1/3AB = 2√5/3,
∵OC//AB,
∴∠OCF = ∠B,tan∠OCF = OF/OC = 1/3,设OC = r,则OF = OA - AF = r - 2√5/3,
∴3(r - 2√5/3)=r,解得r = √5,
∴OC = √5。
12. (2023宜宾中考)如图,以AB为直径的⊙O上有两点E、F,$\overset{\frown}{BE}=\overset{\frown}{EF}$,过点E作直线CD⊥AF交AF的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.
(1)求证:CD是⊙O的切线;
(2)求证:EM = EN;
(3)如果N是CM的中点,且AB = 9$\sqrt{5}$,求EN的长.
答案:

(1)证明:连结OE,
∵⌢BE = ⌢EF,
∴∠FAE = ∠EAB,
∵OA = OE,
∴∠AEO = ∠EAB,
∴∠FAE = ∠AEO,
∴AF//OE,
∵CD⊥AF,
∴OE⊥CD,
∵OE是⊙O的半径,
∴CD是⊙O的切线;
(2)证明:由
(1)知CD是⊙O的切线,易证∠CEB = ∠EAC,
∵CM平分∠ACD,
∴∠ECM = ∠ACM,
∴∠CEB + ∠ECM = ∠EAC + ∠ACM,
∴∠ENM = ∠EMN,
∴EM = EN;
(3)解:由
(2)知EM = EN,∠EMN = ∠ENM,
∵∠EMN = ∠BNC,
∴∠ECM = ∠BCN,
∴△EMC∽△BNC,
∴EM/BN = CE/CB = CM/CN,
∵N是CM的中点,
∴EM/BN = CE/CB = CM/CN = 2,
∴EM = 2BN,CE = 2BC,
∵∠BEC = ∠EAB,∠BCE = ∠ECA,
∴△BEC∽△EAC,
∴BE/EA = CE/CA = BC/EC = 1/2,
∴AE = 2BE,在Rt△ABE中,AE² + BE² = AB²,
∴(2BE)² + BE² = (9√5)²,
∴BE = 9,
∵EN = EM = 2BN,
∴EN = 2/3BE = 6,
∴EN的长为6。

查看更多完整答案,请扫码查看

关闭