2025年学考A加同步课时练九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学考A加同步课时练九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB = 3,AD = 2,CE = 1. 求DF的长度.
答案:
解:
∵四边形ABCD是矩形,
∴DC = AB = 3,∠ADC = ∠C = 90°.
∵CE = 1,
∴DE = $\sqrt{DC^{2}+CE^{2}}$ = $\sqrt{10}$.
∵AF⊥DE,
∴∠AFD = 90° = ∠C
∴∠ADF + ∠DAF = 90°.
又
∵∠ADF + ∠EDC = 90°,
∴∠EDC = ∠DAF,
∴△EDC∽△DAF,
∴$\frac{DE}{AD}$ = $\frac{CE}{FD}$,即$\frac{\sqrt{10}}{5}$ = $\frac{1}{FD}$,
∴FD = $\frac{\sqrt{10}}{5}$,即DF的长度为$\frac{\sqrt{10}}{5}$.
∵四边形ABCD是矩形,
∴DC = AB = 3,∠ADC = ∠C = 90°.
∵CE = 1,
∴DE = $\sqrt{DC^{2}+CE^{2}}$ = $\sqrt{10}$.
∵AF⊥DE,
∴∠AFD = 90° = ∠C
∴∠ADF + ∠DAF = 90°.
又
∵∠ADF + ∠EDC = 90°,
∴∠EDC = ∠DAF,
∴△EDC∽△DAF,
∴$\frac{DE}{AD}$ = $\frac{CE}{FD}$,即$\frac{\sqrt{10}}{5}$ = $\frac{1}{FD}$,
∴FD = $\frac{\sqrt{10}}{5}$,即DF的长度为$\frac{\sqrt{10}}{5}$.
2. 如图,在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PE⊥EC.
(1)求证:△AEP∽△DEC;
(2)若AB = 3,BC = 5,求AP的长.
(1)求证:△AEP∽△DEC;
(2)若AB = 3,BC = 5,求AP的长.
答案:
(1)证明:
∵AE⊥BD,PE⊥EC,
∴∠AED = ∠PEC = 90°,
∴∠AEP = ∠DEC.
∵∠EAD + ∠ADE = 90°,∠ADE + ∠CDE = 90°,
∴∠EAP = ∠EDC,
∴△AEP∽△DEC.
(2)解:在Rt△ADE和Rt△BAE中,∠AEB = ∠AED = 90°,
又
∵∠DAE + ∠BAE = 90°,∠DAE + ∠ADE = 90°,
∴∠BAE = ∠ADE,
∴△AEB∽△DEA,
∴$\frac{AE}{DE}$ = $\frac{AB}{AD}$ = $\frac{3}{5}$,
由
(2)知△AEP∽△DEC,
∴$\frac{AE}{DE}$ = $\frac{AP}{CD}$ = $\frac{3}{5}$,即$\frac{AP}{3}$ = $\frac{3}{5}$,
∴AP = $\frac{9}{5}$.
(1)证明:
∵AE⊥BD,PE⊥EC,
∴∠AED = ∠PEC = 90°,
∴∠AEP = ∠DEC.
∵∠EAD + ∠ADE = 90°,∠ADE + ∠CDE = 90°,
∴∠EAP = ∠EDC,
∴△AEP∽△DEC.
(2)解:在Rt△ADE和Rt△BAE中,∠AEB = ∠AED = 90°,
又
∵∠DAE + ∠BAE = 90°,∠DAE + ∠ADE = 90°,
∴∠BAE = ∠ADE,
∴△AEB∽△DEA,
∴$\frac{AE}{DE}$ = $\frac{AB}{AD}$ = $\frac{3}{5}$,
由
(2)知△AEP∽△DEC,
∴$\frac{AE}{DE}$ = $\frac{AP}{CD}$ = $\frac{3}{5}$,即$\frac{AP}{3}$ = $\frac{3}{5}$,
∴AP = $\frac{9}{5}$.
3. 如图,在△ABC中,AB = AC,AB² = BD·BC. 求证:∠B = ∠BAD.
答案:
证明:
∵AB² = BD·BC,
∴$\frac{AB}{CB}$ = $\frac{BD}{BA}$.
∵∠B = ∠B,
∴△BAD∽△BCA,
∴∠BAD = ∠C.
∵AB = AC,
∴∠B = ∠C,
∴∠B = ∠BAD.
∵AB² = BD·BC,
∴$\frac{AB}{CB}$ = $\frac{BD}{BA}$.
∵∠B = ∠B,
∴△BAD∽△BCA,
∴∠BAD = ∠C.
∵AB = AC,
∴∠B = ∠C,
∴∠B = ∠BAD.
4. 已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,BE = FD,AF的延长线交BC的延长线于点H,AE的延长线交DC的延长线于点G.
(1)求证:△AFD∽△GAD;
(2)如果DF² = CF·CD,求证:BE = CH.
(1)求证:△AFD∽△GAD;
(2)如果DF² = CF·CD,求证:BE = CH.
答案:
证明:
(1)
∵四边形ABCD是菱形,
∴AB = AD,∠B = ∠D.
又
∵BE = DF,
∴△ABE≌△ADF(SAS),
∴∠BAE = ∠DAF.
又
∵AB//CD,
∴∠G = ∠BAE = ∠DAF.
又
∵∠D = ∠D,
∴△AFD∽△GAD.
(2)
∵DF² = CF·CD,
∴$\frac{CF}{DF}$ = $\frac{DF}{CD}$.
又
∵AD//BH,
∴$\frac{CF}{DF}$ = $\frac{CH}{AD}$,
∴$\frac{CH}{AD}$ = $\frac{DF}{CD}$.
又
∵AD = CD,
∴CH = DF.
又
∵△ABE≌△ADF,
∴BE = DF,
∴BE = CH.
(1)
∵四边形ABCD是菱形,
∴AB = AD,∠B = ∠D.
又
∵BE = DF,
∴△ABE≌△ADF(SAS),
∴∠BAE = ∠DAF.
又
∵AB//CD,
∴∠G = ∠BAE = ∠DAF.
又
∵∠D = ∠D,
∴△AFD∽△GAD.
(2)
∵DF² = CF·CD,
∴$\frac{CF}{DF}$ = $\frac{DF}{CD}$.
又
∵AD//BH,
∴$\frac{CF}{DF}$ = $\frac{CH}{AD}$,
∴$\frac{CH}{AD}$ = $\frac{DF}{CD}$.
又
∵AD = CD,
∴CH = DF.
又
∵△ABE≌△ADF,
∴BE = DF,
∴BE = CH.
查看更多完整答案,请扫码查看